Page images
PDF
EPUB

of a spike of flowers, as in the fruit of the pine-apple (fig. 34), the | in the plants called angiospermous; while in gymnospermous plants, bread-fruit and jack-fruit. Similarly the fruit of the mulberry represents a catkin-like inflorescence.

The syconus is an anthocarpous fruit, in which the receptacle completely encloses numerous flowers and becomes succulent. The fig (fig. 4) is of this nature, and what are called its seeds are the achenes of the numerous flowers scattered over the succulent hollowed receptacle. In Dorstenia the axis is less deeply hollowed, and of a harder texture, the fruit exhibiting often very anomalous forms. The strobilus, or cone, is a seed-bearing spike, more or less elongated, covered with scales, each of which may be regarded as representing a separate flower, and has often two seeds at its base; the seeds are naked, no ovary, being present. This fruit is seen in the cones of firs, spruces, larches and cedars, which have received the

FIG. 33.

such as Coniferae and Cycadaceae, it is naked, or, in other words, has no true pericarp. It sometimes happens in Angiosperms, that the seed-vessel is ruptured at an early period of growth, so that the seeds become more or less exposed during their development; this occurs in mignonette, where the capsule opens at the apex, and in Cuphea, where the placenta bursts through the ovary and floral envelopes, and appears as an erect process bearing the young seeds. After fertilization the ovule is greatly changed, in connexion with the formation of the embryo. In the embryo-sac of most Angiosperms (q.v.) there is a development of cellular tissue, the endosperm, more or less filling the embryo-sac. In Gymnosperms (q.v.) the endosperm is formed preparatory to fertilization. The fertilized egg enlarges and becomes multicellular, forming the embryo. The embryo-sac enlarges greatly. displacing gradually the surrounding nucellus, which eventually forms merely a thin layer around the sac, or completely disappears. The remainder of the nucellus and the integuments of the ovules form the seed-coats. In some cases (fig. 35) a delicate inner coat or tegmen can be distinguished from a tougher outer coat or lesta; often, however, the layers are not thus separable. The consistency of the seed-coat, its thickness, the character of its surface, &c., vary widely, the variations being often closely associated with the environment or with the means of seed-dispersal. An account of the development of the seed from the ovule will be found in the article ANGIOSPERMS. When the pericarp is dehiscent the seed-covering is of a strong and often rough character; but when the pericarp is indehiscent and encloses the seed for a long period, the outer seed-coat is thin and soft. The cells of the testa are often coloured, and have projections and appendages of various kinds. Thus in Abrus precatorius and Adenanthera pavonina it is of a bright red colour; in French beans it is beautifully mottled; in the almond it is veined; in the tulip

[ocr errors][merged small][merged small]

FIG. 32. Honesty (Lunaria biennis), showing the septum after the carpels have fallen away.

From Strasburger's Lehrbuch der Botanik, by permission of Gustav Fischer. FIG. 33.-Silicula or pouch of shepherd's purse (Capsella), opening by two folded valves, which separate from above downwards. The partition is narrow, hence the silicula is angustiseptal.

From Strasburger's Lehrbuch der Botanik, by permission of Gustav Fischer. FIG. 34-Fruit of the pine-apple (Ananassa sativa), developed from a spike of numerous flowers with bracts, united so as to form a collective or anthocarpous fruit. The crown of the pine-apple, c, consists of a series of empty bracts prolonged beyond the fruit. name of Coniferae, or cone-bearers, on this account. Cone-like fruit is also seen in most Cycadaceae. The scales of the strobilus are sometimes thick and closely united, so as to form a more or less angular and rounded mass, as in the cypress; while in the juniper they become fleshy, and are so incorporated as to form a globular fruit like a berry. The dry fruit of the cypress and the succulent fruit of the juniper have received the name of galbulus. In the hop the fruit is called also a strobilus, but in it the scales are thin and membranous, and the seeds are not naked but are contained in pericarps. The same causes which produce alterations in the other parts of the flower give rise to anomalous appearances in the fruit. The carpels, in place of bearing seeds, are sometimes changed into leaves, with lobes at their margins. Leaves are sometimes produced from the upper part of the fruit. In the genus Citrus, to which the orange and lemon belong, it is very common to meet with a separation of the carpels, so as to produce what are called horned oranges and fingered citrons. In this case a syncarpous fruit has a tendency to become apocarpous. In the orange we occasionally find a supernumerary row of carpels produced, giving rise to the appearance of small and imperfect oranges enclosed within the original one; the navel orange is of this nature. It sometimes happens that, by the union of flowers, double fruits are produced. Occasionally a double fruit is produced, not by the incorporation of two flowers, but by the abnormal development of a second carpel in the flower.

Arrangement of Fruits.

A. True fruits-developed from the ovary alone. 1. Pericarp not fleshy or fibrous.

i. Indehiscent-not opening to allow the escape of the seeds generally one-seeded. Achene; caryopsis; cypsela; nut; schizocarp.

ii. Dehiscent-the pericarp splits to allow the escape of the seeds generally many-seeded. Follicle; legume; siliqua; capsule. 2. Pericarp generally differentiated into distinct layers, one of which is succulent or fibrous. Drupe; berry. B. Pseudocarps-the development extends beyond the ovary. Pome; syconus; sorosis.

The Seed. The seed is formed from the ovule as the result of fertilization. It is contained in a seed-vessel formed from the ovary

[ocr errors][ocr errors]

FIG. 35.

[merged small][ocr errors][ocr errors][ocr errors][ocr errors]

Remaining cotyledon; ch, chalaza-point at which the nourishing FIG. 35.-Seed of Pea (Pisum) with one cotyledon removed. c, vessels enter; e, tegmen or inner coat; f, funicle or stalk; g. plumule of embryo; m, micropyle; pl, placenta; r, radicle of embryo;, tigellum or stalk between root and plumule; ie, testa. FIG. 36.-Seed of Asclepias, with a cluster of hairs arising from the edges of the micropyle.

and primrose it is rough; in the snapdragon it is marked with depressions; in cotton and Asclepias (fig. 36) it has hairs attached to it; and in mahogany, Bignonia, and the pines and firs it is expanded in the form of wing-like appendages (fig. 37). In Collomia, Acanthodium, Cobaea scandens and other seeds, it contains spiral cells, from which, when moistened with water, the fibres uncoil in a beautiful manner; and in flax (Linum) and others the cells are converted into mucilage. These structural peculiarities of the testa in different plants have relation to the scattering of the seed and its germination upon a suitable nidus. But in some plants the pericarps assume structures which subserve the same purpose; this especially occurs in small pericarps enclosing single seeds, as achenes, caryopsides, &c. Thus in Compositae and valerian, the pappose limb of the calyx forms a parachute to the pericarp; in Labiatae and some Compositae spiral cells are formed in the epicarp; and the epicarp is prolonged as a wing in Fraxinus (fig. 1) and Acer (fig. 21). after fertilization, to which the name arillus has been given (fig. 38). Sometimes there is an additional covering to the seed, formed placenta or extremity of the funicle at the base of the ovule and This is seen in the passion-flower, where the covering arises from the passes upwards towards the apex, leaving the micropyle uncovered. In the nutmeg and spindle tree this additional coat is formed from above downwards, constituting in the former case a laciniated scarlet covering called mace. In such instances it has been called be reflected upwards so as to cover the micropyle. The fleshy an arillode (fig. 39). This arillode, after growing downwards, may scarlet covering formed around the naked seed in the yew is by points, there are produced at times other cellular bodies, to which some considered of the nature of an aril. On the testa, at various the name of strophioles, or caruncles, has been given, the seeds being strophiolate or carunculate. These tumours may occur near the base of the seed, as in Polygala, or at the apex, as in Castor-oil blood-root (Sanguinaria) and Asarabacca. The funicles of the ovules plant (Ricinus); or they may occur in the course of the raphe, as in frequently attain a great length in the seed, and in some magnolias, when the fruit dehisces, they appear as long scarlet cords suspending the seeds outside. The hilum or umbilicus of the seed is usually

well marked, as a scar of varying size; in the calabar bean and in | some species of Mucuna and Dolichos it extends along a large portion of the edge of the seed; it frequently exhibits marked colours, being black in the bean, white in many species of Phaseolus, &c. The micropyle (fig. 35, m) of the seed may be recognizable by the naked eye, as in the pea and bean tribe, Iris, &c., or it may be very minute or microscopic. It indicates the true apex of the seed, and is important as marking the point to which the root of the embryo is directed. At the micropyle in the bean is observed a small process of integument, which, when the young plant sprouts, is pushed up like a lid; it is called the embryolega. The chalaza (fig. 38, ch) is often of a different colour from the rest of the seed. In the orange (fig. 40) it is of a reddish-brown colour, and is easily recognized at one end of the seed when the integuments are carefully removed. In anatropal seeds the raphe forms a distinct ridge along one side of the seed (fig. 41).

The position of the seed as regards the pericarp resembles that of the ovule in the ovary, and the same terms are applied-erect, ascending, pendulous, suspended, curved, &c. These terms have no reference to the mode in which the fruit is attached to the axis. Thus the seed may be erect while the fruit itself is pendent, in the ordinary meaning of that term. The part of the seed next the axis or the ventral suture is its face, the opposite side being the back. Seeds exhibit great varieties of form. They may be flattened laterally (compressed), or from above downwards (depressed). They may be round, oval, triangular, polygonal, rolled up like a snail, as in Physostemon, or coiled up like a snake, as in Ophiocaryon paradoxum.

00000

FIG. 37.

FIG. 38.

FIG. 41.

FIG. 39. FIG. 40. FIG. 37.-Seed of Pine (Pinus), with a membranous appendage w to the testa, called a wing. FIG. 38.-Younganatropal seed of the white Water-lily (Nymphaea alba), cut vertically. It is attached to the placenta by the funicle f; cellular prolongations from which form an aril a a. The vessels of the cord are prolonged to the base of the nucellus n by means of the raphe r. The base of the nucellus is indicated by the chalaza ch, while the apex is at the micropyle m. The covering of the seed is marked i. n is the nucellus or perisperm, enclosing the embryo-sac es, is which the endosperm is formed. The embryo e, with its suspensor, is contained in the sac, the radicle pointing to the micropyle m. FIG. 39-Arillode a, or false aril, of the Spindle-tree (Euonymus), arising from the micropyle f.

FIG. 40.-Anatropal seed of the Orange (Citrus Aurantium) opened to show the chalaza c, which forms a brown spot at one end. FIG. 41.-Entire anatropal seed of the Orange (Citrus Aurantium), with its rugose or wrinkled testa, and the raphe ramifying in the

thickness of the testa on one side.

The endosperm formed in the embryo-sac of angiosperms after fertilization, and found previous to it in gymnosperms, consists of cells containing nitrogenous and starchy or fatty matter, destined for the nutriment of the embryo. It occupied the whole cavity of the embryo-sac, or is formed only at certain portions of it, at the apex, as in Rhinanthus, at the base, as in Vaccinium, or in the middle, as in Veronica. As the endosperm increases in size along with the embryo-sac and the embryo, the substance of the original nucellus of the ovule is gradually absorbed. Sometimes, however, as in Musaceae, Cannaceae, Zingiberaceae, no endosperm is formed; the cells of the original nucellus, becoming filled with food-materials for the embryo, are not absorbed, but remain surrounding the embryo-sac with the embryo, and constitute the perisperm. Again, in other plants, as Nymphaeaceae (fig. 38) and Piperaceae, both endosperm and perisperm are present. It was from observations on cases such as these that old authors, imagining a resemblance betwixt the plant-ovule and the animal ovum, applied the name albumen to the outer nutrient mass or perisperm, and designated the endosperm as vitellus. The term albumen is very generally used as including all the nutrient matter stored up in the seed, but it would be advisable to discard the name as implying a definite chemical substance. There is a large class of plants in which although at first after fertilization a mass of endosperm is formed. yet, as the embryo increases in size, the nutrient matter from the endospermic cells passes out from them, and is absorbed by the cells of the embryo plant. In the mature seed, in such cases, there is no separate mass of tissue containing nutrient food-material apart from the embryo itself. Such a seed is said to be exalbuminous, as in Compositae, Cruciferae and most Leguminosae (e.g. pea, fig. 35).

When either endosperm or perisperm or both are present the seed is said to be albuminous. The albumen varies much in its nature and consistence, and furnishes important characters. It may be farinaceous or mealy, consisting chiefly of cells filled with starch, as in cereal grains, where it is abundant; fleshy or cartilaginous, consisting of thicker cells which are still soft, as in the coco-nut, and which sometimes contain oil, as in the oily albumen of Croton, Ricinus and poppy; horny, when the cell-walls are slightly thickened and capable of distension, as in date and coffee; the cell-walls sometimes become greatly thickened, filling up the testa as a hard mass, as in vegetable ivory (Phylelephas). The albumen may be uniform throughout, or it may present a mottled appearance, as in the nutmeg, the seeds of Anonaceae and some Palms, where it is called ruminated. This mottled appearance is due to a protrusion of a dark lamella of the integument between folded protuberances of albumen. A cavity is sometimes left in the centre which is usually filled with

ון

fluid, as in the coco-nut. The FIG. 42. The dicotyledonous relative size of the embryo and of embryo of the Pea laid open. the endosperm varies much. In c, c, The two fleshy cotyledons, Monocotyledons the embryo is or seed-lobes, which remain under usually small, and the endosperm ground when the plant sprouts; large, and the same is true in the 7, the radicular extremity of the case of coffee and many other axis whence the root arises; 1, plants amongst Dicotyledons. the axis (hypocotyl) bearing the The opposite is the case in other young stalk and leaves g (plumplants, as in the Labiatae, Plum- ule), which lie in a depression of baginaceae, &c. the cotyledons f.

The embryo consists of an axis bearing the cotyledons (fig. 42, c), or the first leaves of the plant. To that part of this axis immediately beneath the cotyledons the terms hypocotyl, caulicle or tigellum (1) have been applied, and continuous backwards with it is the young root or radicle (7), the descending axis, their point of union being the collar or neck. The terminal growing bud of the axis is called the plumule or gemmule (g), and represents the ascending axis. The radicular extremity points towards the micropyle, while the cotychalaza. Hence, by ascertaining the position of the micropyle and ledonary extremity is pointed towards the base of the ovule or the covered. It is in many cases difficult to recognize the parts in an chalaza, the two extremities of the embryo can in general be disembryo; thus in Cuscuta, the embryo appears as an elongated axis without divisions; and in Caryocar the mass of the embryo is made up by the radicular extremity and hypocotyl, in a groove of which the cotyledonary extremity lies embedded (fig. 52). In some monocotyledonous embryos, as in Orchidaceae, the embryo is a cellular mass showing no parts. In parasitic plants also which form no chlorophyll, as Orobanche, Monotropa, &c., the embryo remains ripening of the seed. When the embryo is surrounded by the endowithout differentiation, consisting merely of a mass of cells until the figs. 19, 20); when lying outside the endosperm, and only coming sperm on all sides except its radicular extremity it is internal (see into contact with it at certain points, it is external, as in grasses (e.g. wheat, fig. 22). When the embryo follows the direction of the axis of the seed, it is axile or axial (fig. 43); when it is not in the direction of the axis, it becomes abaxile or abaxial. In campylotropal seeds the embryo is curved, and in place of being embedded in endosperm, is frequently external to it, following the concavity of the seed (fig. 44), and becoming peripherical, with the chalaza situated in the curvature of the embryo, as in Caryophyllaceae.

It has been already stated that the radicle of the embryo is directed to the micropyle, and the cotyledons to the chalaza. In some cases, by the growth of the integuments, the former is turned round so as not to correspond with the apex of the nucellus, and then the embryo has the radicle directed to one side, and is called excentric, as is seen in Primulaceae, Plantaginaceae and many palms, especially the date. The position of the embryo in different kinds of seeds varies. In an orthotropal seed the embryo is inverted or antitropal, the radicle pointing to the apex of the seed, or to the part opposite the hilum. Again, in an anatropal seed the embryo is erect or homotropal (fig. 43), the radicle being directed to the base of the seed. In curved or campylotropal seeds the embryo is folded so that its radicular and cotyledonary extremities are approximated, and it becomes amphitropal (fig. 44). In this instance the seed may be exalbuminous, and the embryo may be folded on itself; or albuminous, the embryo surrounding more or less completely the endosperm and being peripherical. According to the mode in which the seed is attached to the pericarp, the radicle may be directed upwards or downwards, or laterally, as regards the ovary In an orthotropal seed attached to the base of the pericarp it is superior, as also in a suspended anatropal seed. In other anatropal seeds the radicle is inferior. When the seed is horizontal as regards the pericarp, the radicle is either centrifugal, when it points to the outer wall of the ovary; or centripetal, when it points to the axis or inner wall of the ovary. These characters are of value for purposes of classification, as they are often constant in large groups of genera.

Plants in which there are two cotyledons produced in the embryo are dicotyledonous. The two cotyledons thus formed are opposite to each other (figs. 42 and 45), but are not always of the same size. Thus, in Abronia and other members of the order Nyctaginaceae, one of them is smaller than the other (often very small), and in Carapa guianensis there appears to be only one, in consequence of the intimate union which takes place between the two. The union between the cotyledonary leaves may continue after the young plant begins to germinate. Such embryos have been called pseudomonocotyledonous. The texture of the cotyledons varies. They may be thick, as in the pea (fig. 42), exhibiting no traces of venation, with their flat internal surfaces in contact, and their backs more or less convex; or they may be in the form of thin and delicate laminae, flattened on both sides, and having distinct venation, as in Ricinus, Jatropha, Euonymus, &c. The cotyledons usually form the greater part of the mature embryo, and this is remarkably well seen in such exalbuminous seeds as the bean and pea.

Cotylédons are usually entire and sessile. But they occasionally become lobed, as in the walnut and the lime; or petiolate, as in Geranium molle; or auriculate, as in the ash. Like leaves in the

ch

In those plants in which there is only a single cotyledon in the embryo, hence called monocotyledonous, the embryo usually has a cylindrical form more or less rounded at the extremities, or elongated and fusiform, often oblique. The axis is usually very short compared with the cotyledon, which in general encloses the plumule by its lower portion, and exhibits on one side a small slit which indicates the union of the edges of the vaginal or sheathing portion of the leaf (fig. 50). In grasses, by the enlargement of the embryo in a particular direction, the endosperm is pushed on one side, and thus the embryo comes to lie outside at the base of the endosperm (figs. 22, 51). The lamina of the cotyledon is not developed. Upon the side of the embryo next the endosperm and enveloping it is a large shield-shaped body, termed the scutellum. This is an outgrowth from the base of the cotyledon, enveloping more or less the cotyledon

[blocks in formation]

FIG. 43.

FIG. 47.

FIG. 48.

FIG. 44. FIG. 45FIG. 43.-Seed of Pansy (Viola tricolor) cut vertically. The em bryo pl is axial, in the midst of fleshy endosperm al. The seed is anatropal, and the embryo is homotropal; the cotyledons co point to the base of the nucellus or chalaza ch, while the radicle, or the other extremity of the embryo, points to the micropyle, close to the hilum h. The hilum or base of the seed, and the chalaza or base of the nucellus are united by means of the rapher.

FIG. 44-Seed of the Red Campion (Lychnis), cut vertically, showing the peripherical embryo, with its two cotyledons and its radicle. The embryo is curved round the albumen, so that its cotyledons and radicle both come near the hilum (amphitropal). FIG. 45-Mature dicotyledonous embryo of the Almond, with one of the cotyledons removed. Radicle;, young stem or caulicle; c, one of the cotyledons left; i, line of insertion of the cotyledon which has been removed; g, plumule,

FIG. 46.-Exalbuminous seed of Wallflower (Cheiranthus) cut vertically. The radicle is folded on the edges of the cotyledons c which are accumbent.

FIG. 47-Transverse section of the seed of the Wallflower (Cheiranthus), showing the radicle r folded on the edges of the accumbent cotyledons c.

FIG. 48.-Transverse section of the seed of the Dame's Violet (Hesperis). The radicle r is folded on the back of the cotyledons c, which are said to be incumbent.

bud, cotyledons may be either applied directly to each other, or may be folded in various ways. In geranium the cotyledons are twisted and doubled; in convolvulus they are corrugated; and in the potato and in Bunias, they are spiral,the same terms being applied as to the foliage leaves. The radicle and cotyledons are either straight or variously curved. Thus, in some cruciferous plants, as the wallflower, the cotyledons are applied by their faces, and the radicle (figs. 46, 47) is folded on their edges, so as to be lateral; the cotyledons are here accumbent. In others, as Hesperis, the cotyledons (fig. 48) are applied to each other by their faces, and the radicle, 7, is folded on their back, so as to be dorsal, and the cotyledons are incumbent. Again, the cotyledons are con duplicate when the radicle is dorsal, and enclosed between their folds. In other divisions the radicle is folded in a spiral manner, and the cotyledons follow the same course.

FIG. 49.-Polycotyledonous embryo of the Pine (Pinus) beginning to sprout., Hypocotyl;, radicle. The cotyledons c are numerous. Within the cotyledons the primordial leaves are seen, constituting the plumule or first bud of the plant.

FIG. 50.-Embryo of a species of Arrow-grass (Triglochin), showing a uniform conical mass, with a slit s near the lower part. The cotyledon c envelops the young bud, which protrudes at the slit during germination. The radicle is developed from the lower part of the axis r.

FIG. 51.-Grain of Wheat (Triticum) germinating, showing (b) the cotyledon and (c) the rootlets surrounded by their sheaths (coleorrhizae).

the whole mass, becoming narrowed and curved at its extremity, FIG. 52.-Embryo of Caryocar. 1, Thick hypocotyl, forming nearly and applied to the groove s. In the figure this narrowed portion is slightly separated from the groove; c, two rudimentary cotyledons. and plumule, in some cases, as in maize, completely investing it; in other cases, as in rice, merely sending small prolongations over its anterior face at the apex. By others this scutellum is considered as the true cotyledon, and the sheathing structure covering the plumule is regarded as a ligule or axillary stipule (see GRASSES). In many aquatic monocotyledons (e.g. Potamogeton, Ruppia and others) there is a much-developed hypocotyl, which forms the greater part of the embryo and acts as a store of nutriment in germination; these are known as macropodous embryos. A similar case is that of Caryocar among Dicotyledons, where the swollen hypocotyl occupies most of the embryo (fig. 52). In some grasses, as oats and rice, a projection of cellular tissue is seen upon the side of the embryo opposite to the scutellum, that is, on the anterior side. This has been termed the epiblast. It is very large in rice. This by some was considered the rudimentary second cotyledon, but is now generally regarded as an outgrowth of the sheath of the true cotyledon. (A. B. R.)

FRUIT AND FLOWER FARMING. The different sorts of fruits and flowers are dealt with in articles under their own headings, to which reference may be made, and these give the substantial facts as to their cultivation. See also the article HORTICULTURE.

GREAT BRITAIN

The extent of the fruit industry may be gathered from the figures for the acreage of land under cultivation in orchards and small fruit plantations. The Board of Agriculture returns concerning the orchard areas of Great Britain showed a continuous expansion year by year from 199,178 acres in 1888 to 234,660 acres in 1901, as will be learnt from Table I. There was, it is In many gymnosperms more than two cotyledons are present, and they are arranged in a whorl. This occurs in Coniferae, especi- true, an exception in 1892, but the decline in that year is exally in the pine, fir (fig. 49), spruce and larch, in which six, nine, plained by the circumstance that since 1891 the agricultural twelve and even fifteen have been observed. They are linear, and returns have been collected only from holdings of more than resemble in their form and mode of development the clustered or fasciculated leaves of the larch. Plants having numerous coty of a quarter of an acre or more. one acre, whereas they were previously obtained from all holdings ledons are termed polycotyledonous. In species of Streptocarpus the As there are many holdings cotyledons are permanent, and act the part of leaves. One of them of less than an acre in extent upon which fruit is grown, and as is frequently largely developed, while the other is small or abortive.fruit is largely raised also in suburban and other gardens which

[blocks in formation]

Oxford, Salop, Sussex, Warwick and Wilts. Apples are the principal fruit grown in the western and south-western counties, pears also being fairly common. In parts of Gloucestershire, however, and in the Evesham and Pershore districts of Worcestershire, plum orchards exist. Plums are almost as largely grown as apples in Cambridgeshire. Large quantities of apples, plums, damsons, cherries, and a fair quantity of pears are grown for the market in Kent, whilst apples, plums and pears predominate in Middlesex. In many counties damsons are cultivated around fruit plantations to shelter the latter from the wind.

Of small fruit (currants,gooseberries,strawberries, raspberries, &c.) no return was made of the acreage previous to 1888, in which year it was given as 36,724 acres for Great Britain. In 1889 it rose to 41,933 acres.

Later figures are shown in Table III. It will be observed that, owing to corrections made in the enumeration in 1897, a considerTABLE III.-Areas of Small Fruit in Great Britain.

[blocks in formation]
[blocks in formation]

58 704

1895

74.547

1899

71,526

1892

62,148

1896

[blocks in formation]

73.780

[blocks in formation]
[blocks in formation]
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

able reduction in the area is recorded for. that year, and presumably the error then discovered existed in all the preceding returns. The returns for 1907 gave the acreage of small fruit as 82,175 acres, and in 1908 at 84,880 acres an area more than double that of 1889.

There has undoubtedly been a considerable expansion, rather than a contraction, of small fruit plantations since 1896. The acreage of small fruit in Great Britain is about one-third that of the orchards. As may be seen in Table IV., it is mainly confined to England, though Scotland has over 4000 more acres of small TABLE IV.-Areas under Small Fruit in England, Wales and Scotland -Acres.

Year.

Salop

[blocks in formation]

4685

Dorset.

4464

Monmouth

[blocks in formation]

3914

Wilts

3630

1899

64,867

[blocks in formation]

1900

66.749

[blocks in formation]
[blocks in formation]
[blocks in formation]

75.750

[blocks in formation]

Leaving out of consideration the county of Kent, which grows a greater variety of fruit than any of the others, the counties of Devon, Hereford, Somerset, Worcester and Gloucester have an aggregate orchard area of 124,872 acres. These five counties of the west and south-west of England-constituting in one continuous area what is essentially the cider country of Great Britain-embrace therefore rather less than half of the entire orchard area of the island, while Salop, Monmouth and Wilts have about 300 less than they had a few years ago. Five English counties have less than 1000 acres each of orchards, namely, the county of London, and the northern counties of Cumberland, Westmorland, Northumberland and Durham. Rutland has just over 100 acres. The largest orchard areas in Wales are in the two counties adjoining Hereford-Brecon with 1136 acres and Radnor with 727 acres; at the other extreme is Anglesey, with a decreasing orchard area of only 22 acres. Of the Scottish counties, Lanark takes the lead with 1285 acres, Perth, Stirling and Haddington following with 684 and 129 acres respectively. Ayr and Midlothian are the only other counties possessing 100 acres or more of orchards, whilst Kincardine, Orkney and Shetland return no orchard area, and Banff, Bute, Kinross, Nairn, Peebles, Sutherland and Wigtown return less than 10 acres each. It may be added that in 1908 Jersey returned 1090 acres of orchards, Guernsey, &c., 144 acres, and the Isle of Man, 121 acres; the two last-named places showing a decline as compared with eight years previously.

Outside the cider counties proper of England, the counties in which orchards for commercial fruit-growing have increased considerably in recent years include Berks, Buckingham, Cambridge, Essex, Lincoln, Middlesex, Monmouth, Norfolk,

fruit than of orchards. About one-third of the area of small fruit in England belongs to Kent alone, that county having returned 24,137 acres in 1908. Cambridge now ranks next with 6878 acres, followed by Norfolk with 5876 acres, Worcestershire with 4852 acres, Middlesex with 4163 acres, Hants with 3320 acres and Essex with 2150 acres. It should be remarked that between 1900 and 1908 Cambridgeshire had almost doubled its area of small fruits, from 3740 to 6878 acres; whilst both Norfolk and Worcestershire in 1908 had larger areas devoted to small fruits than Middlesex-in which county there had been a decrease of about 400 acres during the same period. The largest county area of small fruit in Wales is 806 acres in Denbighshire, and in Scotland 2791 acres in Perthshire, 2259 acres in Lanarkshire, followed by 412.acres in Forfarshire. The only counties in Great Britain which make no return under the head of small fruit are Orkney and Shetland; and Sutherland only gives 2 acres. It is hardly necessary to say that considerable areas of small fruit, in kitchen gardens and elsewhere, find no place in the official returns, which, however, include small fruit grown between and under orchard trees.

Gooseberries are largely grown in most small fruit districts. Currants are less widely cultivated, but the red currant is more extensively grown than the black, the latter having suffered seriously from the ravages of the black currant mite. Kent is the great centre for raspberries and for strawberries, though, in addition, the latter fruit is largely grown in Cambridgeshire (2411 acres), Hampshire (2327 acres), Norfolk (2067 acres) and Worcestershire (1273 acres). Essex, Lincolnshire, Cheshire,

[blocks in formation]

Cornwall and Middlesex each has more than 500 acres devoted | rose in 1908 to £60,000. In 1900, also, currants, gooseberries and to strawberry cultivation.

The following statement from returns for 1908 shows the area under different kinds of fruit in 1907 and 1908 in Great Britain, and also whether there had been an increase or decrease: Increase or Decrease.

Small FruitStrawberries

strawberries, hitherto included in unenumerated raw fruit, were likewise for the first time separately returned. Of raw currants the import was 64,462 cwt., valued at £87,170 (1908, £121,850); of raw gooseberries 26,045 cwt., valued at £14,626 (1908, £25.520); and of raw strawberries, 52,225 cwt., valued at £85,949. In 1907 only 44,000 cwt. of strawberries were imported. In 1901 the quantities and values were respectively-currants, 70,402 cwt., TABLE V.-Imports of Raw Apples, Pears, Plums, Cherries and Grapes into the United Kingdom, 1892 to 1901. Quantities in Thousands of Bushels (thousands of cwt. in 1900 and 1901), Values in Thousands of Pounds Sterling.

Raspberries

8,878

[blocks in formation]

Currants and Goose

Quantities.

Year.

[blocks in formation]

+ 651

[blocks in formation]

Other kinds

19,880

20,501

+ 621

[blocks in formation]
[blocks in formation]

It appears from the Board of Agriculture returns that 27,433 acres of small fruit was grown in orchards, so that the total extent of land under fruit cultivation in Great Britain at the end of 1908 was about 308,000 acres.

There are no official returns as to the acreage devoted to orchard cultivation in Ireland. The figures relating to small fruit, moreover, extend back only to 1899, when the area under this head was returned as 4809 acres, which became 4359 acres in 1900 and 4877 acres in 1901. In most parts of the country there are districts favourable to the culture of small fruits, such as strawberries, raspberries, gooseberries and currants, and of top fruits, such as apples, pears, plums and damsons. The only localities largely identified with fruit culture as an industry are the Drogheda district and the Armagh district. In the former all the kinds named are grown except strawberries, the speciality being raspberries, which are marketed in Dublin, Belfast and Liverpool. In the Armagh district, again, all the kinds named are grown, but in this case strawberries are the speciality, the markets utilized being Richhill, Belfast, and those in Scotland. In the Drogheda district the grower bears the cost of picking, packing and shipping, but he cannot estimate his net returns until his fruit is on the market. Around Armagh the Scottish system prevails-that is, the fruit is sold while growing, the buyer being responsible for the picking and marketing.

The amount of fruit imported into the United Kingdom has such an important bearing on the possibilities of the industry that the following figures also may be useful:

The quantities of apples, pears, plums, cherries and grapes imported in the raw condition into the United Kingdom in each year, 1892 to 1901, are shown in Table V. Previous to 1892 apples only were separately enumerated. Upto 1899 inclusive the quantities were given in bushels, but in 1900 a change was made to hundredweights. This renders the quantities in that and subsequent years not directly comparable with those in earlier years, but the comparison of the values, which are also given in the table, continues to hold good. The figures for 1908 have been added to show the increase that had taken place. In some years the value of imported apples exceeds the aggregate value of the pears, plums, cherries and grapes imported. The extreme values for apples shown in the table are £844,000 in 1893 and £2,079,000 in 1908. Grapes rank next to apples in point of value, and over the seventeen years the amount ranged between £394,000 in 1892 and £728,000 in 1908. On the average, the annual outlay on imported pears is slightly in excess of that on plums. The extremes shown are £167,000 in 1895 and £515,000 in 1908. In the case of plums, the smallest outlay tabulated is £166,000 in 1895, whilst the largest is £498,000 in 1897. The amounts expended upon imported cherries varied between £96.000 in 1895 and £308,000 in 1900. In 1900 apricots and peaches, imported raw, previously included with raw plums, were for the first time separately enumerated, the import into the United Kingdom for that year amounting to 13,689 cwt., valued at £25.846; in 1901 the quantity was 13,463 cwt. and the value £32,350. The latter

1908

1 Thousands of cwts.

£75.308; gooseberries, 21,735 cwt., £11,420; strawberries, 38,604 cwt., £51,290. Up to 1899 the imports of tomatoes were included amongst unenumerated raw vegetables, so that the quantity was not separately ascertainable. For 1900 the import of tomatoes fraction under 24d. per lb. For 1901 the quantity was 793.991 cwt.. was 833,032 cwt., valued at £792,339, which is equivalent to a and the value £734,051; for 1906, there were 1,124,700 cwt., valued at 1953.475; for 1907, 1,135,499 cwt., valued at £1,020,805; and for 1908, 1,160,283 cwt., valued at £955,983.

fruits, such as can easily be produced at home, was £4.195,654, In 1908 the outlay of the United Kingdom upon imported raw made up as follows:

[blocks in formation]

Plums £428,966 Currants 121,852 515.914 Apricots and peaches 60,141 235,523 Gooseberries 25.529 fruit, and £560,000 on nuts other than almonds "used as fruit," In addition about £280,000 was spent upon unenumerated " raw which would include walnuts and filberts, both produced at home. It is certain, therefore, that the expenditure on imported fruits, such as are grown within the limits of the United Kingdom, exceeds four millions sterling per annum. The remainder of the outlay on imported fruit in 1908, amounting to over £5,000,000, was made up of £2,269,651 for oranges, £471,713 for lemons, £1,769,249 for bananas, and £560,301 for almond-nuts; these cannot be grown on

an industrial scale in the British Isles.

Pears are

It may be interesting to note the source of some of these imported fruits. The United States and Canada send most of the apples, the quantity for 1907 being 1,413,000 cwt. and 1,588,000 cwt. respectively, while Australia contributes 280,000 cwt. Plums come chiefly from France (200,000 cwt.), followed with 38,000 cwt. from Germany and 28,000 cwt. from the Netherlands. imported chiefly from France (204,000 cwt.) and Belgium (176,000); but the Netherlands send 52,000 cwt., and the United States 24,000 cwt. The great bulk of imported tomatoes comes from the Canary Islands, the quantity in 1907 being 604,692 cwt. The Channel Islands also sent 223,800 cwt., France 115,500 cwt., Spain 169,000 cwt., and Portugal a long way behind with 11,700 cwt. Most of the strawberries imported come from France (33,800 cwt.) and the Netherlands (10,300 cwt.).

Fruil-growing in Kent-Kent is by far the largest fruit-growing county in England. For centuries that county has been famous for its fruit, and appears to have been the centre for the distribu tion of trees and grafts throughout the country. The cultivation

« ՆախորդըՇարունակել »