Page images
PDF
EPUB

the varying resistance of perfectly regular stratified rocks on the other.

The details of the sculpture of the land have mainly depended on the nature of the materials on which nature's erosive tools have been employed. The joints by which all rocks are traversed have been especially serviceable as dominant lines down which the rain has filtered, up which the springs have risen and into which the frost wedges have been driven. On the high bare scarps of a lofty mountain the inner structure of the mass is laid open, and there the system of joints even more than faults is seen to have determined the lines of crest, the vertical walls of cliff and precipice, the forms of buttress and recess, the position of cleft and chasm, the outline of spire and pinnacle. On the lower slopes, even under the tapestry of verdure which nature delights to hang where she can over her naked rocks, we may detect the same pervading influence of the joints upon the forms assumed by ravines and crags. Each kind of stone, too, gives rise to its own characteristic form of scenery. Massive crystalline rocks, such as granite, break up along their joints and often decay into sand or earth along their exposed surfaces, giving rise to rugged crags with long talus slopes at their base. The stratified rocks besides splitting at their joints are especially distinguished by parallel ledges, cornices and recesses, produced by the irregular decay of their component strata, so that they often assume curiously architectural types of scenery. But besides this family feature they display many minor varieties of aspect according to their lithological composition. A range of sandstone hills, for example, presents a marked contrast to one of limestone, and a line of chalk downs to the escarpments formed by alternating bands of harder and softer clays and shales.

It may suffice here merely to allude to a few of the more important parts of the topography of the land in their relation to physiographical geology. A true mountain-chain, viewed from the geological side, is a mass of high ground which owes its prominence to a ridging-up of the earth's crust, and the intense plication and rupture of the rocks of which it is composed. But ranges of hills almost mountainous in their bulk may be formed by the gradual erosion of valleys out of a mass of original high ground, such as a high plateau or tableland. Eminences which have been isolated by denudation from the main mass of the formations of which they originally formed part are known as "outliers" or "hills of circumdenudation."

Tablelands, as already pointed out, may be produced either by the upheaval of tracts of horizontal strata from the sea-floor into land; or by the uprise of plains of denudation, where rocks of various composition, structure and age have been levelled down to near or below the level of the sea by the co-operation of the various erosive agents. Most of the great tablelands of the globe are platforms of little-disturbed strata which have been upraised bodily to a considerable elevation. No sooner, however, are they placed in that position than they are attacked by running water, and begin to be hollowed out into systems of valleys. As the valleys sink, the platforms between them grow into narrower and more definite ridges, until eventually the level tableland is converted into a complicated network of hills and valleys, wherein, nevertheless, the key to the whole arrangement is furnished by a knowledge of the disposition and effects of the flow of water. The examples of this process brought to light in Colorado, Wyoming, Nevada and the other western regions by Newberry, King, Hayden, Powell and other explorers, are among the most striking monuments of geological operations in the world.

Examples of ancient and much decayed tablelands formed by the denudation of much disturbed rocks are furnished by. the Highlands of Scotland and of Norway. Each of these tracts of high ground consists of some of the oldest and most dislocated formations of Europe, which at a remote period were worn down into a plain, and in that condition may have lain long submerged under the sea and may possibly have been overspread there with younger formations. Having at a much later time been raised several thousand feet above sea-level the ancient platforms

of Britain and Scandinavia have been since exposed to denudation, whereby each of them has been so deeply channeled into glens and fjords that it presents to-day a surface of rugged hills, either isolated or connected along the flanks, while only fragments of the general surface of the tableland can here and there be recognized amidst the general destruction.

Valleys have in general been hollowed out by the greater erosive action of running water along the channels of drainage. Their direction has been probably determined in the great majority of cases by irregularities of the surface along which the drainage flowed on the first emergence of the land. Sometimes these irregularities have been produced by folds of the terrestrial crust, sometimes by faults, sometimes by the irregularities on the surface of an uplifted platform of deposition or of denudation. Two dominant trends may be observed among them. Some are longitudinal and run along the line of flexures in the upraised tract of land, others are transverse where the drainage has flowed down the slopes of the ridges into the longitudinal valleys or into the sea. The forms of valleys have been governed partly by the structure and composition of the rocks, and partly by the relative potency of the different denuding agents. Where the influence of rain and frost has been slight, and the streams, supplied from distant sources, have had sufficient declivity, deep, narrow, precipitous ravines or gorges have been excavated. The canyons of the arid region of the Colorado are a magnificent example of this result. Where, on the other hand, ordinary atmospheric action has been more rapid, the sides of the river channels have been attacked, and open sloping glens and valleys have been hollowed out. A gorge or defile is usually due to the action of a waterfall, which, beginning with some abrupt declivity or precipice in the course of the river when it first commenced to flow, or caused by some hard rock crossing the channel, has eaten its way backward. Lakes have been already referred to, and their modes of origin have been mentioned. As they are continually being filled up with the detritus washed into them from the surrounding regions they cannot be of any great geological antiquity, unless where by some unknown process their basins are from time to time widened and deepened.

In the general subaerial denudation of a country, innumerable minor features are worked out as the structure of the rocks controls the operations of the eroding agents. Thus, among comparatively undisturbed strata, a hard bed resting upon others of a softer kind is apt to form along its outcrop a line of cliff or escarpment. Though a long range of such cliffs resembles a coast that has been worn by the sea, it may be entirely due to mere atmospheric waste. Again, the more resisting portions of a rock may be seen projecting as crags or knolls. An igneous mass will stand out as a bold hill from amidst the more decomposable strata through which it has risen. These features often so marked on the lower grounds, attain their most conspicuous development among the higher and barer parts of the mountains, where subaerial disintegration is most rapid. The torrents tear out deep gullies from the sides of the declivities. Corries or cirques are scooped out on the one hand and naked precipices are left on the other. The harder bands of rock project as massive ribs down the slopes, shoot up into prominent aiguilles, or help to give to the summits the notched saw-like outlines they so often present.

The materials worn from the surface of the higher are spread out over the lower grounds. The streams as they descend begin to drop their freight of sediment when, by the lessening of their declivity, their carrying power is diminished. The great plains of the earth's surface are due to this deposit of gravel, sand and loam. They are thus monuments at once of the destructive and reproductive processes which have been in progress unceasingly since the first land rose above the sea and the first shower of rain fell. Every pebble and particle of their soil, once part of the distant mountains, has travelled slowly and fitfully to lower levels. Again and again have these materials been shifted, ever moving downward and sea-ward. For centuries, perhaps, they have taken their share in the fertility of the plains and

vertex. Let CC be the other foci of the ellipse and the hyperbola. Make AD equal to AB, and with centres CC and radius in each case equal to CD describe circles. Then any point of the ellipse is equidistant from the focus B and one circle, and any point of the hyperbola from the focus B and the other circle. Any point P of the parabola, in which the second focus is missing or infinitely distant, is equidistant from the focus B and the line through D which we call the directrix, this taking the place of either circle when its centre C is at infinity, and every line CP being then parallel to the axis. Thus Briggs, and we know not how many "savans géomètres" who have left no record, had already taken up the new doctrine in geometry in its author's lifetime. Six years after Kepler's death in 1630 Girard Desargues, "the Monge of his age," brought out the first of his remarkable works founded on the same principles, a short tract entitled Méthode universelle de mettre en perspective les objets donnés réellement ou en devis (Paris, 1636); but "Le privilége étoit de 1630" (Poudra, Œuvres de Des., i. 55). Kepler as a modern

have ministered to the nurture of flower and tree, of the bird of the air, the 'beast of the field and of man himself. But their destiny is still the great ocean. In that bourne alone can they find undisturbed repose, and there, slowly accumulating in massive beds, they will remain until, in the course of ages, renewed upheaval shall raise them into future land, there once more to pass through the same cycle of change. (A. GE.) LITERATURE.-Historical: The standard work is Karl A. von Zittel's Geschichte der Geologie und Paläontologie (1899), of which there is an abbreviated, but still valuable, English translation; D'Archiac, Histoire des progrès de la géologie, deals especially with the period 1834-1850; Keferstein, Geschichte und Literatur der Geognosie, gives a summary up to 1840; while Sir A. Geikie's Founders of Geology (1897; 2nd ed., 1906) deals more particularly with the period 1750-1820. General treatises: Sir Charles Lyell's Principles of Geology is a classic. Of modern English works, Sir A. Geikie's Text Book of Geology (4th ed., 1903) occupies the first place; the work of T. C. Chamberlin and R. D. Salisbury, Geology; Earth History (3 vols., 1905-1906), is especially valuable for American geology. A. de Lapparent's Traité de géologie (5th ed., 1906), is the standard French work. H. Credner's Elemente der Geologie has gone through several editions in Germany. Dynamical and physio-geometer is best known by his New Stereometry of Wine Casks graphical geology are elaborately treated by E. Suess, Das Antlitz der Erde, translated into English, with the title The Face of the Earth. The practical study of the science is treated of by F. von Richthofen, Führer für Forschungsreisende (1886); G. A. Cole, Aids in Practical Geology (5th ed., 1906); A. Geikie, Outlines of Field Geology (5th ed., 1900). The practical applications of Geology are discussed by J. V. Elsden, Applied Geology (1898-1899). The relations of Geology to scenery are dealt with by Sir A. Geikie, Scenery of Scotland (3rd ed., 1901); J. E. Marr, The Scientific Study of Scenery (1900); Lord Avebury, The Scenery of Switzerland (1896): The Scenery of England (1902); and J. Geikie, Earth Sculpture (1898). A detailed bibliography is given in Sir A. Geikie's Text Book of Geology. See also the separate articles on geological subjects for special references to authorities.

66

[ocr errors]

GEOMETRICAL CONTINUITY. In a report of the Institute prefixed to Jean Victor Poncelet's Traité des propriétés projectives des figures (Paris, 1822), it is said that he employed ce qu'il appelle le principe de continuité." The law or principle thus named by him had, he tells us, been tacitly assumed as axiomatic by "les plus savans géomètres." It had in fact been enunciated as " lex continuationis," and "la loi de la continuité," by Gottfried Wilhelm Leibnitz (Oxf. N.E.D.), and previously under another name by Johann Kepler in cap. iv. 4 of his Ad Vitellionem paralipomena quibus astronomiae pars optica traditur (Francofurti, 1604). Of sections of the cone, he says, there are five species from the recta linea " or line-pair to the circle. From the line-pair we pass through an infinity of hyperbolas to the parabola, and thence through an infinity of ellipses to the circle. Related to the sections are certain remarkable points which have no name. Kepler calls them foci. The circle has one focus at the centre, an ellipse or hyperbola two foci equidistant from the centre. The parabola has one focus within it, and another, the "caecus focus," which may be imagined to be at infinity on the axis within or without the curve. The line from it to any point of the section is parallel to the axis. To carry out the analogy we must speak paradoxically, and say that the linepair likewise has foci, which in this case coalesce as in the circle and fall upon the lines themselves; for our geometrical terms should be subject to analogy. Kepler dearly loves analogies, his most trusty teachers, acquainted with all the secrets of nature, omnium naturae arcanorum conscios." And they are to be especially regarded in geometry as, by the use of "however absurd expressions," classing extreme limiting forms with an infinity of intermediate cases, and placing the whole essence of a thing clearly before the eyes.

Here, then, we find formulated by Kepler the doctrine of the concurrence of parallels at a single point at infinity and the principle of continuity (under the name analogy) in relation to the infinitely great. Such conceptions so strikingly propounded in a famous work could not escape the notice of contemporary mathematicians. Henry Briggs, in a letter to Kepler from Merton College, Oxford, dated " 10 Cal. Martiis 1625," suggests improvements in the Ad Vitellionem paralipomena, and gives the following construction: Draw a line CBADC, and let an ellipse, a parabola, and a hyperbola have B and A for focus and

(Lincii, 1615), in which he replaces the circuitous Archimedean method of exhaustion by a direct “royal road " of infinitesimals, treating a vanishing arc as a straight line and regarding a curve as made up of a succession of short chords. Some 2000 years previously one Antipho, probably the well-known opponent of Socrates, has regarded a circle in like manner as the limiting form of a many-sided inscribed rectilinear figure. Antipho's notion was rejected by the men of his day as unsound, and when reproduced by Kepler it was again stoutly opposed as incapable of any sort of geometrical demonstration-not altogether without reason, for it rested on an assumed law of continuity rather than on palpable proof.

To complete the theory of continuity, the one thing needful was the idea of imaginary points implied in the algebraical geometry of René Descartes, in which equations between variables representing co-ordinates were found often to have imaginary roots. Newton, in his two sections on "Inventio orbium (Principia i. 4, 5), shows in his brief way that he is familiar with the principles of modern geometry. In two propositions he uses an auxiliary line which is supposed to cut the conic in X and Y, but, as he remarks at the end of the second (prop. 24), it may not cut it at all. For the sake of brevity he passes on at once with the observation that the required constructions are evident from the case in which the line cuts the trajectory. In the scholium appended to prop. 27, after saying that an asymptote is a tangent at infinity, he gives an unexplained general construction for the axes of a conic, which seems to imply that it has asymptotes. In all such cases, having equations to his loci in the background, he may have thought of elements of the figure as passing into the imaginary state in such manner as not to vitiate conclusions arrived at on the hypothesis of their reality.

Roger Joseph Boscovich, a careful student of Newton's works, has a full and thorough discussion of geometrical continuity in the third and last volume of his Elementa universae matheseos (ed. prim. Venet, 1757), which contains Sectionum conicarum elementa nova quadam methodo concinnata et dissertationem de transformatione locorum geometricorum, ubi de continuitatis lege, et de quibusdam infinili mysteriis. His first principle is that all varieties of a defined locus have the same properties, so that what is demonstrable of one should be demonstrable in like manner of all, although some artifice may be required to bring out the underlying analogy between them. The opposite extremities of an infinite straight line, he says, are to be regarded as joined, as if the line were a circle having its centre at the infinity on either side of it. This leads up to the idea of a veluti plus quam infinita extensio, a line-circle containing, as we say, the line infinity. Change from the real to the imaginary state is contingent upon the passage of some element of a figure through zero or infinity and never takes place per saltum. Lines being some positive and some negative, there must be negative rectangles and negative squares, such as those of the exterior diameters of a hyperbola. Boscovich's first principle was that of Kepler, by whose quantumvis absurdis locutionibus the boldest

applications of it are covered, as when we say with Poncelet | its infancy it therefore consisted of a few rules, very rough and that all concentric circles in a plane touch one another in two imaginary fixed points at infinity. In G. K. Ch. von Staudt's Geometrie der Lage and Beiträge zur G. der L. (Nürnberg, 1847, 1856-1860) the geometry of position, including the extension of the field of pure geometry to the infinite and the imaginary, is presented as an independent science, "welche des Messens nicht bedarf." (See GEOMETRY: Projective.)

Ocular illusions due to distance, such as Roger Bacon notices in the Opus majus (i. 126, ii. 108, 497; Oxford, 1897), lead up to or illustrate the mathematical uses of the infinite and its reciprocal the infinitesimal. Specious objections can, of course, be made to the anomalies of the law of continuity, but they are inherent in the higher geometry, which has taught us so much of the "secrets of nature." Kepler's excursus on the " analogy" between the conic sections hereinbefore referred to is given at length in an article on "The Geometry of Kepler and Newton " in vol. xviii. of the Transactions of the Cambridge Philosophical Society (1900). It had been generally overlooked, until attention was called to it by the present writer in a note read in 1880 (Proc. C.P.S. iv. 14-17), and shortly afterwards in The Ancient and Modern Geometry of Conics, with Historical Notes and Prolegomena (Cambridge 1881). (C. T.*) GEOMETRY, the general term for the branch of mathematics which has for its province the study of the properties of space. From experience, or possibly intuitively, we characterize existent space by certain fundamental qualities, termed axioms, which are insusceptible of proof; and these axioms, in conjunction with the mathematical entities of the point, straight line, curve, surface and solid, appropriately defined, are the premises from which the geometer draws conclusions. The geometrical axioms are merely conventions; on the one hand, the system may be based upon inductions from experience, in which case the deduced geometry may be regarded as a branch of physical science; or, on the other hand, the system may be formed by purely logical methods, in which case the geometry is a phase of pure mathematics. Obviously the geometry with which we are most familiar is that of existent space-the three-dimensional space of experience; this geometry may be termed Euclidean, after its most famous expositor. But other geometries exist, for it is possible to frame systems of axioms which definitely characterize some other kind of space, and from these axioms to deduce a series of non-contradictory propositions; such geometries are called non-Euclidean.

The

approximate, for computing the areas of triangles and quadrilaterals; and, with the Egyptians, it proceeded no further, the geometrical entities-the point, line, surface and solid-being only discussed in so far as they were involved in practical affairs. The point was realized as a mark or position, a straight line as a stretched string or the tracing of a pole, a surface as an area; but these units were not abstracted; and for the Egyptians geometry was only an art-an auxiliary to surveying. first step towards its elevation to the rank of a science was made by Thales (q.v.) of Miletus, who transplanted the elementary Egyptian mensuration to Greece. Thales clearly abstracted the notions of points and lines, founding the geometry of the latter unit, and discovering per saltum many propositions concerning areas, the circle, &c. The empirical rules of the Egyptians were corrected and developed by the Ionic School which he founded, especially by Anaximander and Anaxagoras, and in the 6th century B.C. passed into the care of the Pythagoreans. From this time geometry exercised a powerful influence on Greek thought. Pythagoras (q.v.), seeking the key of the universe in arithmetic and geometry, investigated logically the principles underlying the known propositions; and this resulted in the formulation of definitions, axioms and postulates which, in addition to founding a science of geometry, permitted a crystallization, fractional, it is true, of the amorphous collection of material at hand. Pythagorean geometry was essentially a geometry of areas and solids; its goal was the regular sòlidsthe tetrahedron, cube, octahedron, dodecahedron and icosahedron-which symbolized the five elements of Greek cosmology. The geometry of the circle, previously studied in Egypt and much more seriously by Thales, was somewhat neglected, although this curve was regarded as the most perfect of all plane figures and the sphere the most perfect of all solids. The circle, however, was taken up by the Sophists, who made most of their discoveries in attempts to solve the classical problems of squaring the circle, doubling the cube and trisecting an angle. These problems, besides stimulating pure geometry, i.e. the geometry of constructions made by the ruler and compasses, exercised considerable influence in other directions. The first problem led to the discovery of the method of exhaustion for determining areas. Antiphon inscribed a square in a circle, and on each side an isosceles triangle having its vertex on the circle; on the sides of the octagon so obtained, isosceles triangles were again constructed, the process leading to inscribed polygons of 8, 16 and

It is convenient to discuss the subject-matter of geometry 32 sides; and the areas of these polygons, which are easily under the following headings:

1. Euclidean Geometry: a discussion of the axioms of existent space and of the geometrical entities, followed by a synoptical account of Euclid's Elements.

II. Projective Geometry: primarily Euclidean, but differing from I. in employing the notion of geometrical continuity (q.v.)points and lines at infinity.

III. Descriptive Geometry: the methods for representing upon planes figures placed in space of three dimensions.

IV. Analytical Geometry: the representation of geometrical figures and their relations by algebraic equations.

V. Line Geometry: an analytical treatment of the line regarded as the space element.

VI. Non-Euclidean Geometry: a discussion of geometries other than that of the space of experience.

VII. Axioms of Geometry: a critical analysis of the foundations of geometry.

Special subjects are treated under their own headings: e.g. PROJECTION, PERSPECTIVE; CURVE, SURFACE; CIRCLE, CONIC SECTION; TRIANGLE, POLYGON, POLYHEDRON; there are also articles on special curves and figures, e.g. ELLIPSE, PARABOLA, HYPERBOLA: TETRAHEDRON, CUBE, OCTAHEDRON, DODECAHEDRON, ICOSAHEDRON; CARDIOID, CATENARY, CISSOID,CONCHOID, CYCLOID, EPICYCLOID, LIMAÇON, OVAL, QUADRATRIX, SPIRAL, &c.

History. The origin of geometry (Gr. yn, earth, per pov, a measure) is, according to Herodotus, to be found in the etymology of the word. Its birthplace was Egypt, and it arose from the need of surveying the lands inundated by the Nile floods. In

determined, are successive approximations to the area of the circle. Bryson of Heraclea took an important step when he circumscribed, in addition to inscribing, polygons to a circle, but he committed an error in treating the circle as the mean of the two polygons. The method of Antiphon, in assuming that by continued division a polygon can be constructed coincident with the circle, demanded that magnitudes are not infinitely divisible. Much controversy ranged about this point; Aristotle supported the doctrine of infinite divisibility; Zeno attempted to show its absurdity. The mechanical tracing of loci, a principle initiated by Archytas of Tarentum to solve the last two problems, was a frequent subject for study, and several mechanical curves were thus discovered at subsequent dates (cissoid, conchoid, quadratrix). Mention may be made of Hippocrates, who, besides developing the known methods, made a study of similar figures, and, as a consequence, of proportion. This step is important as bringing into line discontinuous number and continuous magnitude.

A fresh stimulus was given by the succeeding Platonists, who, accepting in part the Pythagorean cosmology, made the study of geometry preliminary to that of philosophy. The many discoveries made by this school were facilitated in no small measure by the clarification of the axioms and definitions, the logical sequence of propositions which was adopted, and, more especially, by the formulation of the analytic method, i.e. of assuming the truth of a proposition and then reasoning to a 1 For Egyptian geometry see EGYPT, § Science and Mathematics.

known truth. The main strength of the Platonist geometers | equations by intersecting conics, a step already taken by the lies in stereometry or the geometry of solids. The Pythagoreans had dealt with the sphere and regular solids, but the pyramid, prism, cone and cylinder were but little known until the Platonists took them in hand. Eudoxus established their mensuration, proving the pyramid and cone to have one-third the content of a prism and cylinder on the same base and of the same height, and was probably the discoverer of a proof that the volumes of spheres are as the cubes of their radii. The discussion of sections of the cone and cylinder led to the discovery of the three curves named the parabola, ellipse and hyperbola (see CONIC SECTION); it is difficult to over-estimate the importance of this discovery; its investigation marks the crowning achievement of Greek geometry, and led in later years to the fundamental theorems and methods of modern geometry.

Greeks in isolated cases, but only elevated into a method by Omar al Hayyami, who flourished in the 11th century. During the middle ages little was added to Greek and Arabic geometry. Leonardo of Pisa wrote a Practica geometriae (1220), wherein Euclidean methods are employed; but it was not until the 14th century that geometry, generally Euclid's Elements, became an essential item in university curricula. There was, however, no sign of original development, other branches of mathematics, mainly algebra and trigonometry, exercising a greater fascination until the 16th century, when the subject again came into favour. The extraordinary mathematical talent which came into being in the 16th and 17th centuries reacted on geometry and gave rise to all those characters which distinguish modern from ancient geometry. The first innovation of moment was the formulation of the principle of geometrical continuity by Kepler. The notion of infinity which it involved permitted generalizations and systematizations hitherto unthought of (see GEOMETRICAL CONTINUITY); and the method of indefinite division applied to rectification, and quadrature and cubature problems avoided the cumbrous method of exhaustion and provided more accurate results. Further progress was made by Bonaventura Cavalieri, who, in his Geometria indivisibilibus continuorum (1620), de

the infinitesimal calculus of Leibnitz and Newton. The logical basis of his system was corrected by Roberval and Pascal; and their discoveries, taken in conjunction with those of Leibnitz, Newton, and many others in the fluxional calculus, culminated in the branch of our subject known as differential geometry (see INFINITESIMAL CALCULUS, CURVE; SURFACE).

The presentation of the subject-matter of geometry as a connected and logical series of propositions, prefaced by "Opot or foundations, had been attempted by many; but it is to Euclid that we owe a complete exposition. Little indeed in the Elements is probably original except the arrangement; but in this Euclid surpassed such predecessors as Hippocrates, Leon, pupil of Neocleides, and Theudius of Magnesia, devising an apt logical model, although when scrutinized in the light of modern mathematical conceptions the proofs are riddled with fallacies. Accord-vised a method intermediate between that of exhaustion and ing to the commentator Proclus, the Elements were written with a twofold object, first, to introduce the novice to geometry, and secondly, to lead him to the regular solids; conic sections found no place therein. What Euclid did for the line and circle, Apollonius did for the conic sections, but there we have a discoverer as well as editor. These two works, which contain the greatest contributions to ancient geometry, are treated in detail in Section I. Euclidean Geometry and the articles EUCLID; CONIC SECTION; APOLLONIUS. Between Euclid and Apollonius there flourished the illustrious Archimedes, whose geometrical discoveries are mainly concerned with the mensuration of the circle and conic sections, and of the sphere, cone and cylinder, and whose greatest contribution to geometrical method is the elevation of the method of exhaustion to the dignity of an instrument of research. Apollonius was followed by Nicomedes, the inventor of the conchoid; Diocles, the inventor of the cissoid; Zenodorus, the founder of the study of isoperimetrical figures; Hipparchus, the founder of trigonometry; and Heron the elder, who wrote after the manner of the Egyptians, and primarily directed attention to problems of practical surveying.

Of the many isolated discoveries made by the later Alexandrian mathematicians, those of Menelaus are of importance. He showed how to treat spherical triangles, establishing their properties and determining their congruence; his theorem on the products of the segments in which the sides of a triangle are cut by a line was the foundation on which Carnot erected his theory of transversals. These propositions, and also those of Hipparchus, were utilized and developed by Ptolemy (q.v.), the expositor of trigonometry and discoverer of many isolated propositions. Mention may be made of the commentator Pappus, whose Mathematical Collections is valuable for its wealth of historical matter; of Theon, an editor of Euclid's Elements and commentator of Ptolemy's Almagest; of Proclus, a commentator of Euclid; and of Eutocius, a commentator of Apollonius and Archimedes.

The Romans, essentially practical and having no inclination to study science qua science, only had a geometry which sufficed for surveying; and even here there were abundant inaccuracies, the empirical rules employed being akin to those of the Egyptians and Heron. The Hindus, likewise, gave more attention to computation, and their geometry was either of Greek origin or in the form presented in trigonometry, more particularly connected with arithmetic. It had no logical foundations; each proposition stood alone; and the results were empirical. The Arabs more closely followed the Greeks, a plan adopted as a sequel to the translation of the works of Euclid, Apollonius, Archimedes and many others into Arabic. Their chief contribution to geometry is exhibited in their solution of algebraic

A second important advance followed the recognition that Conics could be regarded as projections of a circle, a conception which led at the hands of Desargues and Pascal to modern projective geometry and perspective. A third, and perhaps the most important, advance attended the application of algebra to geometry by Descartes, who thereby founded analytical geometry. The new fields thus opened up were diligently explored, but the calculus exercised the greatest attraction and relatively little progress was made in geometry until the beginning of the 19th century, when a new era opened.

Gaspard Monge was the first important contributor, stimulating analytical and differential geometry and founding descriptive geometry in a series of papers and especially in his lectures at the Ecole polytechnique. Projective geometry, founded by Desargues, Pascal, Monge and L. N. M. Carnot, was crystallized by J. V. Poncelet, the creator of the modern methods. In his Traité des propriétés des figures (1822) the line and circular points at infinity, imaginaries, polar reciprocation, homology, crossratio and projection are systematically employed. In Germany, A. F. Möbius, J. Plücker and J. Steiner were making far-reaching contributions. Möbius, in his Barycentrische Calcul (1827), introduced homogeneous co-ordinates, and also the powerful notion of geometrical transformation, including the special cases of collineation and duality; Plücker, in his Analytischgeometrische Entwickelungen (1828-1831), and his System der analytischen Geometrie (1835), introduced the abridged notation, line and plane co-ordinates, and the conception of generalized space elements; while Steiner, besides enriching geometry in numerous directions, was the first to systematically generate figures by projective pencils. We may also notice M. Chasles, whose Aperçu historique (1837) is a classic. Synthetic geometry, characterized by its fruitfulness and beauty, attracted most attention, and it so happened that its originally weak logical foundations became replaced by a more substantial set of axioms. These were found in the anharmonic ratio, a device leading to the liberation of synthetic geometry from metrical relations, and in involution, which yielded rigorous definitions of imaginaries. These innovations were made by K. J. C. von Staudt. Analytical geometry was stimulated by the algebra of invariants, a subject much developed by A. Cayley, G. Salmon, S. H. Aronhold, L. O. Hesse, and more particularly by R. F. A. Clebsch.

The introduction of the line as a space element, initiated by

H. Grassmann (1844) and Cayley (1859), yielded at the hands of Plücker a new geometry, termed line geometry, a subject developed more notably by F. Klein, Clebsch, C. T. Reye and F. O. R. Sturm (see Section V., Line Geometry).

Non-euclidean geometries, having primarily their origin in the discussion of Euclidean parallels, and treated by Wallis, Saccheri and Lambert, have been especially developed during the 19th century. Four lines of investigation may be distinguished:the naive-synthetic, associated with Lobatschewski, Bolyai, Gauss; the metric differential, studied by Riemann, Helmholtz, Beltrami; the projective, developed by Cayley, Klein, Clifford; and the critical-synthetic, promoted chiefly by the Italian mathematicians Peano, Veronese, Burali-Forte, Levi Civittà, and the Germans Pasch and Hilbert. (C. E.*)

I. EUCLIDEAN GEOMETRY

This branch of the science of geometry is so named since its methods and arrangement are those laid down in Euclid's Elements.

§ 1. Axioms.-The object of geometry is to investigate the properties of space. The first step must consist in establishing those fundamental properties from which all others follow by processes of deductive reasoning. They are laid down in the Axioms, and these ought to form such a system that nothing need be added to them in order fully to characterize space, and that nothing may be omitted without making the system incomplete. They must, in fact, completely " define " space. § 2. Definitions.-The axioms of Euclidean Geometry are obtained from inspection of existent space and of solids in existent space,-hence from experience. The same source gives us the notions of the geometrical entities to which the axioms relate, viz. solids, surfaces, lines or curves, and points. A solid is directly given by experience; we have only to abstract all material from it in order to gain the notion of a geometrical solid. This has shape, size, position, and may be moved. Its boundary or boundaries are called surfaces. They separate one part of space from another, and are said to have no thickness. Their boundaries are curves or lines, and these have length only. Their boundaries, again, are points, which have no magnitude but only position. We thus come in three steps from solids to points which have no magnitude; in each step we lose one extension. Hence we say a solid has three dimensions, a surface two, a line one, and a point none. Space itself, of which a solid forms only a part, is also said to be of three dimensions. The same thing is intended to be expressed by saying that a solid has length, breadth and thickness, a surface length and breadth, a line length only, and a point no extension whatsoever. Euclid gives the essence of these statements as definitions:Def. 1, I. A point is that which has no parts, or which has no magnitude.

Def. 2, I. A line is length without breadth.

Def. 5, 1. A superficies is that which has only length and breadth. Def. I, XI. A solid is that which has length, breadth and thickness.

It is to be noted that the synthetic method is adopted by Euclid; the analytical derivation of the successive ideas of "surface," "line," and "point" from the experimental realization of a "solid" does not find a place in his system, although possessing more advantages.

If we allow motion in geometry, we may generate these entities by moving a point, a line, or a surface, thus:

The path of a moving point is a line.

The path of a moving line is, in general, a surface. The path of a moving surface is, in general, a solid. And we may then assume that the lines, surfaces and solids, as defined before, can all be generated in this manner. From this generation of the entities it follows again that the boundaries -the first and last position of the moving element-of a line are points, and so on; and thus we come back to the considerations with which we started.

Euclid points this out in his definitions,-Def. 3, L., Def. 6, I., and Def. 2, XI. He does not, however, show the connexion which these definitions have with those mentioned before. When points and lines have been defined, a statement like

|

Def. 3, I., " The extremities of a line are points," is a proposition which either has to be proved, and then it is a theorem, or which has to be taken for granted, in which case it is an axiom. And so with Def. 6, I., and Def. 2, XI.

3. Euclid's definitions mentioned above are attempts to describe, in a few words, notions which we have obtained by inspection of and abstraction from solids. A few more notions have to be added to these, principally those of the simplest line-the straight line, and of the simplest surface-the flat surface or plane. These notions we possess, but to define them accurately is difficult. Euclid's Definition 4, I., “A straight line is that which lies evenly between its extreme points," must be meaningless to any one who has not the notion of straightness in his mind. Neither does it state a property of the straight line which can be used in any further investigation. Such a property is given in Axiom 10, I. It is really this axiom, together with Postulates 2 and 3, which characterizes the straight line.

Whilst for the straight line the verbal definition and axiom are kept apart, Euclid mixes them up in the case of the plane. Here the Definition 7, I., includes an axiom. It defines a plane as a surface which has the property that every straight line which joins any two points in it lies altogether in the surface. But if we take a straight line and a point in such a surface, and draw all straight lines which join the latter to all points in the first line, the surface will be fully determined. This construction is therefore sufficient as a definition. That every other straight line which joins any two points in this surface lies altogether in it is a further property, and to assume it gives another axiom. Thus a number of Euclid's axioms are hidden among his first definitions. A still greater confusion exists in the present editions of Euclid between the postulates and axioms so called, but this is due to later editors and not to Euclid himself. The latter had the last three axioms put together with the postulates (airhuara), so that these were meant to include all assumptions relating to space. The remaining assumptions, which relate to magnitudes in general, viz. the first eight "axioms " in modern editions, were called common notions ” (κοιναὶ ἔννοιαι). Of the latter a few may be said to be definitions. Thus the eighth might be taken as a definition of "equal," and the seventh of "halves." If we wish to collect the axioms used in Euclid's Elements, we have therefore to take the three postulates, the last three axioms as generally given, a few axioms hidden in the definitions, and an axiom used by Euclid in the proof of Prop. 4, I, and on a few other occasions, viz. that figures may be moved in space without change of shape or size.

[ocr errors]

§ 4. Postulates.-The assumptions actually made by Euclid may be stated as follows:

(1) Straight lines exist which have the property that any one of them may be produced both ways without limit, that through any two points in space such a line may be drawn, and that any two of them coincide throughout their indefinite extensions as soon as two points in the one coincide with two points in the other. (This gives the contents of Def. 4, part of Def. 35, the first two Postulates, and Axiom 10.)

(2) Plane surfaces or planes exist having the property laid down in Def. 7, that every straight line joining any two points in such a surface lies altogether in it.

(3) Right angles, as defined in Def. 10, are possible, and all right angles are equal; that is to say, wherever in space we take a plane, and wherever in that plane we construct a right angle, all angles thus constructed will be equal, so that any one of them may be made to coincide with any other. (Axiom 11.)

(4) The 12th Axiom of Euclid. This we shall not state now, but only introduce it when we cannot proceed any further without it. (5) Figures may be freely moved in space without change of shape or size. This is assumed by Euclid, but not stated as an axiom. (6) In any plane a circle may be described, having any point in that plane as centre, and its distance from any other point in that plane as radius. (Postulate 3.)

The definitions which have not been mentioned are all "nominal definitions," that is to say, they fix a name for a thing described. Many of them overdetermine a figure.

§ 5. Euclid's Elements (see EUCLID) are contained in thirteen books. Of these the first four and the sixth are devoted to "plane geometry," as the investigation of figures in a plane is generally called. The 5th book contains the theory of proportion

« ՆախորդըՇարունակել »