Page images
PDF
EPUB

taking place in time. We consider its parts as added to one another, and events as filling a larger or smaller extent of such parts. The time which any event takes up is the sum of all such parts, and the relation of the same to time is fully understood when we can clearly see what portions of time it occupies, and what it does not. Thus the relation of known occurrences to time is perceived by intuition; and time is a form of intuition of the external world.

4. Time is conceived as a quantity of one dimension; it has great analogy with a line, but none at all with a surface or solid. Time may be considered as consisting of a series of instants, which are before and after one another; and they have no other relation than this, of before and after. Just the same would be the case with a series of points taken along a line; each would be after those on one side of it, and before those on another. Indeed the analogy between time, and space of one dimension, is so close, that the same terms are applied to both ideas, and we hardly know to which they originally belong. Times and lines are alike called long and short; we speak of the beginning and end of a line; of a point of time, and of the limits of a portion of duration.

5. But, as has been said, there is nothing in time which corresponds to more than one dimension in space, and hence nothing which has any obvious analogy with figure. Time resembles a line indefinitely extended both ways; all partial times are portions of this line; and no mode of conceiving time suggests to us a line making any angle with the original line, or any other combination which might give rise to figures. of any kind. The analogy between time and space, which in many circumstances is so clear, here disappears altogether. Spaces of two and of three dimensions, planes and solids, have nothing to which we can compare them in the conceptions arising out of time.

As figure is a conception solely appropriate to space, there is also a conception which peculiarly belongs to time, namely, the conception of recurrence of times similarly marked; or, as it may be termed,

rhythm, using this word in a general sense. The term rhythm is most commonly used to designate the recurrence of times marked by the syllables of a verse, or the notes of a melody: but it is easy to see that the general conception of such a recurrence does not depend on the mode in which it is impressed upon the sense. The forms of such recurrence are innumerable. Thus in such a line as

Quádrupedánte putrém sonitú quatit úngula cámpum, we have alternately one long or forcible syllable, and two short or light ones, recurring over and over. In like manner in our own language, in the line

At the close of the day when the hámlet is stíll, we have two light and one strong syllable repeated four times over. Such repetition is the essence of versification. The same kind of rhythm is one of the main elements of music, with this difference only, that in music the forcible syllables are made so for the purposes of rhythm by their length only or principally; for example, if either of the above lines were imitated by a melody in the most simple and obvious manner, each strong syllable would occupy exactly twice as much time as two of the weaker ones. Something very analogous to such rhythm may be traced in other parts of poetry and art, which we need not here dwell upon. But in reference to our present subject, we may remark that by the introduction of such rhythm, the flow of time, which appears otherwise so perfectly simple and homogeneous, admits of an infinite number of varied yet regular modes of progress. All the kinds of versification which occur in all languages, and the still more varied forms of recurrence of notes of different lengths, which are heard in all the varied strains of melodies, are only examples of such modifications, or configurations as we may call them, of time. They involve relations of various portions of time, as figures involve relations of various portions of space. But yet the analogy between rhythm and figure is by no means very close; for in rhythm we have relations of quantity alone in the parts of time, whereas in figure we have

relations not only of quantity, but of a kind altogether different, namely, of position. On the other hand, a repetition of similar elements, which does not necessarily occur in figures, is quite essential in order to impress upon us that measured progress of time of which we here speak. And thus the ideas of time and space have each its peculiar and exclusive relations; position and figure belonging only to space, while repetition and rhythm are appropriate to time.

7. One of the simplest forms of recurrence is alternation, as when we have alternate strong and slight syllables. For instance,

Awake, aríse, or bé for éver fáll'n.

Or without any subordination, as when we reckon numbers, and call them in succession, odd, even, odd, even.

8. But the simplest of all forms of recurrence is that which has no variety;-in which a series of units, each considered as exactly similar to the rest, succeed each other; as one, one, one, and so on. In this case, however, we are led to consider each unit with reference to all that have preceded; and thus the series one, one, one, and so forth, becomes one, two, three, four, five, and so on; a series with which all are familiar, and which may be continued without limit.

We thus collect from that repetition of which time admits, the conception of Number.

9.

The relations of position and figure are the subject of the science of geometry; and are, as we have already said, traced into a very remarkable and extensive body of truths, which rests for its foundations on axioms involved in the Idea of Space. There is, in like manner, a science of great complexity and extent, which has its foundation in the Idea of Time. But this science, as it is usually pursued, applies only to the conception of Number, which is, as we have said, the simplest result of repetition. This science is Theoretical Arithmetic, or the speculative doctrine of the properties and relations of numbers; and we must say a few words concerning the principles which it is requisite to assume as the basis of this science.

CHAPTER IX.

OF THE AXIOMS WHICH RELATE TO NUMBER.

I.

THE foundations of our speculative knowledge of

the relations and properties of Number, as well as of Space, are contained in the mode in which we represent to ourselves the magnitudes which are the subjects of our reasonings. To express these foundations in axioms in the case of number, is a matter requiring some consideration, for the same reason as in the case of geometry; that is, because these axioms are principles which we assume as true, without being aware that we have made any assumption; and we cannot, without careful scrutiny, determine when we have stated, in the form of axioms, all that is necessary for the formation of the science, and no more than is necessary. We will, however, attempt to detect the principles which really must form the basis of theoretical arithmetic.

2. Why is it that three and two are equal to four and one? Because if we look at five things of any kind, we see that it is so. The five are four and one; they are also three and two. The truth of our assertion is involved in our being able to conceive the number five at all. We perceive this truth by intuition, for we cannot see, or imagine we see, five things, without perceiving also that the assertion above stated is true.

But how do we state in words this fundamental principle of the doctrine of numbers? Let us consider a very simple case. If we wish to show that seven and two are equal to four and five, we say that seven are four and three, therefore seven and two are four and three and two; and because three and two are

Mathematical reasoners

five, this is four and five. justify the first inference (marked by the conjunctive word therefore), by saying that "When equals are added to equals the wholes are equal," and that thus, since seven is equal to three and four, if we add two to both, seven and two are equal to four and three and two.

3. Such axioms as this, that when equals are added to equals the wholes are equal, are, in fact, expressions of the general condition of intuition, by which a whole is contemplated as made up of parts, and as identical with the aggregate of the parts. And a yet more general form in which we might more adequately express this condition of intuition would be this; that 'Two magnitudes are equal when they can be divided into parts which are equal, each to each.' Thus in the above example, seven and two are equal to four and five, because each of the two sums can be divided into the parts, four, three, and two.

4. In all these cases, a person who had never seen such axioms enunciated in a verbal form would employ the same reasoning as a practised mathematician, in order to satisfy himself that the proposition was true. The steps of the reasoning, being seen to be true by intuition, would carry an entire conviction, whether or not the argument were made verbally complete. Hence the axioms may appear superfluous, and on this account such axioms have often been spoken contemptuously of, as empty and barren assertions. In fact, however, although they cannot supply the deficiency of the clear intuition of number and space in the reasoner himself, and although when he possesses such a faculty, he will reason rightly if he have never heard of such axioms, they still have their place properly at the beginning of our treatises on the science of quantity; since they express, as simply as words can express, those conditions of the intuition of magnitudes on which all reasoning concerning quantity must be based; and are necessary when we want, not only to see the truth of the elementary reasonings on these subjects, but to put such reasonings in a formal and logical shape.

« ՆախորդըՇարունակել »