Page images
PDF
EPUB

CHAPTER VII.

OF THE ESTABLISHMENT OF THE PRINCIPLES OF

DYNAMICS.

I.

IN

N the History of Mechanics, I have traced the steps by which the three Laws of Motion and the other principles of mechanics were discovered, established, and extended to the widest generality of form and application. We have, in these laws, examples of principles which were, historically speaking, obtained by reference to experience. Bearing in mind the object and the result of the preceding discussions, we cannot but turn with much interest to examine these portions of science; to inquire whether there be any real difference in the grounds and nature between the knowledge thus obtained, and those truths which we have already contemplated; and which, as we have seen, contain their own evidence, and do not require proof from experiment.

2.

The First Law of Motion.-The first law of motion is, that When a body moves not acted upon by any force, it will go on perpetually in a straight line, and with a uniform velocity. Now what is the real ground of our assent to this proposition? That it is not at first sight a self-evident truth, appears to be clear; since from the time of Aristotle to that of Galileo the opposite assertion was held to be true; and it was believed that all bodies in motion had, by their own nature, a constant tendency to move more and more slowly, so as to stop at last. This belief, indeed, is probably even now entertained by most persons, till their attention is fixed upon the arguments by which the first law of motion is established. It is, however, not difficult to lead any person of a speculative habit

of thought to see that the retardation which constantly takes place in the motion of all bodies when left to themselves, is, in reality, the effect of extraneous forces which destroy the velocity. A top ceases to spin because the friction against the ground and the resistance of the air gradually diminish its motion, and not because its motion has any internal principle of decay or fatigue. This may be shown, and was, in fact, shown by Hooke before the Royal Society, at the time when the laws of motion were still under discussion, by means of experiments in which the weight of the top is increased, and the resistance to motion offered by its support, is diminished; for by such contrivances its motion is made to continue much longer than it would otherwise do. And by experiments of this nature, although we can never remove the whole of the external impediments to continued motion, and although, consequently, there will always be some retardation; and an end of the motion of a body left to itself, however long it may be delayed, must at last come; yet we can establish a conviction that if all resistance could be removed, there would be no diminution of velocity, and thus the motion would go on for ever.

If we call to mind the axioms which we formerly stated, as containing the most important conditions involved in the idea of Cause, it will be seen that our conviction in this case depends upon the first axiom of Causation, that nothing can happen without a cause. Every change in the velocity of the moving body must have a cause; and if the change can, in any manner, be referred to the presence of other bodies, these are said to exert force upon the moving body: and the conception of force is thus evolved from the general idea of cause. Force is any cause which has motion, or change of motion, for its effect; and thus, all the change of velocity of a body which can be referred to extraneous bodies,—as the air which surrounds it, or the support on which it rests, is considered as the effect of forces; and this consideration is looked upon as explaining the difference between the motion which really takes places in the experiment, and that motion

which, as the law asserts, would take place if the body were not acted on by any forces.

Thus the truth of the first law of motion depends upon the axiom that no change can take place without a cause; and follows from the definition of force, if we suppose that there can be none but an external cause of change. But in order to establish the law, it was necessary further to be assured that there is no internal cause of change of velocity belonging to all matter whatever, and operating in such a manner that the mere progress of time is sufficient to produce a diminution of velocity in all moving bodies. It appears from the history of mechanical science, that this latter step required a reference to observation and experiment; and that the first law of motion is so far, historically at least, dependent upon our experience.

But notwithstanding this historical evidence of the need which we have of a reference to observed facts, in order to place this first law of motion out of doubt, it has been maintained by very eminent mathematicians and philosophers, that the law is, in truth, evident of itself, and does not really rest upon experimental proof. Such, for example, is the opinion of d'Alembert', who offers what is called an à priori proof of this law; that is, a demonstration derived from our ideas alone. When a body is put in motion, either, he says, the cause which puts it in motion at first, suffices to make it move one foot, or the continued action of the cause during this foot is requisite for the motion. In the first case, the same reason which made the body proceed to the end of the first foot will hold for its going on through a second, a third, a fourth foot, and so on for any number. In the second case, the same reason which made the force continue to act during the first foot, will hold for its acting, and therefore for the body moving during each succeeding foot. And thus the body, once beginning to move, must go on moving for ever.

1 Dynamique.

It is obvious that we might reply to this argument, that the reasons for the body proceeding during each succeeding foot may not necessarily be all the same; for among these reasons may be the time which has elapsed; and thus the velocity may undergo a change as the time proceeds: and we require observation to inform us that it does not do so.

Professor Playfair has presented nearly the same argument, although in a different and more mathematical form. If the velocity change, says he, it must change according to some expression of calculation depending upon the time, or, in mathematical language, must be a function of the time. If the velocity diminish as the time increases, this may be expressed by stating the velocity in each case as a certain number, from which another quantity, or term, increasing as the time increases, is subtracted. But, Playfair adds, there is no condition involved in the nature of the case, by which the coefficients, or numbers which are to be employed, along with the number representing the time, in calculating this second term, can be determined to be of one magnitude rather than of any other. Therefore he infers there can be no such coefficients, and that the velocity is in each case equal to some constant number, independent of the time; and is therefore the same for all times.

In reply to this we may observe, that the circumstance of our not seeing in the nature of the case anything which determines for us the coefficients above spoken of, cannot prove that they have not some certain value in nature. We do not see in the nature of the case anything which should determine a body to fall sixteen feet in a second of time, rather than one foot or one hundred feet: yet in fact the space thus run through by falling bodies is determined to a certain magnitude. It would be easy to assign a mathematical expression for the velocity of a body, implying that one-hundredth of the velocity, or any other frac

2 Outlines of Natural Philosophy, p. 26.

tion, is lost in each second3: and where is the absurdity of supposing such an expression really to represent the velocity?

Most modern writers on mechanics have embraced the opposite opinion, and have ascribed our knowledge of this first law of motion to experience. Thus M. Poisson, one of the most eminent of the mathematicians who have written on this subject, says, "We cannot affirm à priori that the velocity communicated to a body will not become slower and slower of itself, and end by being entirely extinguished. It is only by experience and induction that this question can be decided."

Yet it cannot be denied that there is much force in those arguments by which it is attempted to show that the First Law of Motion, such as we find it, is more consonant to our conceptions than any other would be. The Law, as it exists, is the most simple that we can conceive. Instead of having to determine by experiments what is the law of the natural change of velocity, we find the Law to be that it does not change at all. To a certain extent, the Law depends upon the evident axiom, that no change can take place without a cause. But the question further occurs, whether the mere lapse of time may not be a cause of change of velocity. In order to ensure this, we have recourse to experiment; and the result is that time alone does not produce any such change. In addition to the conditions of change which we collect from our own Ideas, we ask of Experience what other conditions and circumstances she has to offer; and the answer is, that she can point out none. When we have removed the alterations which external causes, in our very conception of them, occasion, there are no longer any alterations. Instead of having to guide ourselves

› This would be the case, if, t being the number of seconds elapsed, and C some constant quantity, the velocity were expressed by this mathematical

[blocks in formation]
« ՆախորդըՇարունակել »