Page images
PDF
EPUB

a string, it attains to the same height, whatever is the path it follows, so long as it starts from the lowest point with the same velocity. And thus Galileo's postulate is experimentally confirmed, so far as the force of gravity can be taken as an example of the forces which the postulate contemplates: and conversely, gravity is proved to be a uniform force, so far as it can be considered clear that the postulate is true of uniform forces.

When we have introduced the conception and definition of accelerating force, Galileo's postulate, that bodies descending down inclined planes of the same vertical height, acquire the same velocity, may, by a few steps of reasoning, be demonstrated to be true of uniform forces: and thus the proof that gravity, either in vertical or oblique motion, is a uniform force, is confirmed by the experiment above mentioned; as it also is, on like grounds, by many other experiments, made upon inclined planes and pendulums.

Thus the propriety of Galileo's conception of a uniform force, and the doctrine that gravity is a uniform force, were confirmed by the same reasonings and experiments. We may make here two remarks; First, that the conception, when established and rightly stated, appears so simple as hardly to require experimental proof; a remark which we have already made with regard to the First Law of Motion: and Second, that the discovery of the real law of nature was made by assuming propositions which, without further proof, we should consider as very precarious, and as far less obvious, as well as less evident, than the law of nature in its simple form.

4.

The Second Law of Motion.-When a body, instead of falling downwards from rest, is thrown in any direction, it describes a curve line, till its motion is stopped. In this, and in all other cases in which a body describes a curved path in free space, its motion is determined by the Second Law of Motion. The law, in its general form, is as follows:-When a body is thus cast forth and acted upon by a force in a direction

[graphic]

arise from its gravity to the earth; and that the motion of the stone relative to the tower would thus be the same as if both earth and tower were at rest. Galileo further urged, as a presumption in favour of the opinion that the two motions,-the circular motion arising from the rotation of the earth, and the downward motion arising from the gravity of the stone, would be compounded in the way we have described, (neither of them disturbing or diminishing the other,) that the first motion was in its own nature not liable to any change or diminution, as we learn from the First Law of Motion. Nor was the subject lightly dismissed. The experiment of the stone let fall from the top of the mast was made in various forms by Gassendi; and in his Epistle, De Motu impresso a Motore translato, the rule now in question is supported by reference to these experiments. In this manner, the general truth, the Second Law of Motion, was established completely and beyond dispute.

But when this law had been proved to be true in a general sense, with such accuracy as rude experiments, like those of Galileo and Gassendi, would admit, it still remained to be ascertained (supposing our knowledge of the law to be the result of experience alone,) whether it were true with that precise and rigorous exactness which more refined modes of experimenting could test. We so willingly believe in the simplicity of laws of nature, that the rigorous accuracy of such a law, known to be at least approximately true, was taken for granted, till some ground for suspecting the contrary should appear. Yet calculations have not been wanting which might confirm the law as true to the last degree of accuracy. Laplace relates (Syst. du Monde, livre iv. chap. 16,) that at one time he had conceived it possible that the effect of gravity upon the moon might be slightly modified by the moon's direction and velocity; and that in this way an explanation might be found for the moon's acceleration (a deviation of her observed from her calculated place, which long

• Dialogo, ii. p. 114.

perplexed mathematicians). But it was after some time discovered that this feature in the moon's motion arose from another cause; and the second law of motion was confirmed as true in the most rigorous sense.

Thus we see that although there were arguments which might be urged in favour of this law, founded upon the necessary relations of ideas, men became convinced of its truth only when it was verified and confirmed by actual experiment. But yet in this case again, as in the former ones, when the law had been established beyond doubt or question, men were very ready to believe that it was not a mere result of observation, that the truth which it contained was not derived from experience,—that it might have been assumed as true in virtue of reasonings anterior to experience, and that experiments served only to make the law more plain and intelligible, as visible diagrams in geometry serve to illustrate geometrical truths; our knowledge not being (they deemed) in mechanics, any more than in geometry, borrowed from the senses. It was thought by many to be self-evident, that the effect of a force in any direction cannot be increased or diminished by any motion transverse to the direction of the force which the body may have at the same time: or, to express it otherwise, that if the motion of the body be compounded of a horizontal and vertical motion, the vertical motion alone will be affected by the vertical force. This principle, indeed, not only has appeared evident to many persons, but even at the present day is assumed as an axiom by many of the most eminent mathematicians. It is, for example, so employed in the Mécanique Céleste of Laplace, which may be looked upon as the standard of mathematical mechanics in our time; and in the Mécanique Analytique of Lagrange, the most consummate example which has appeared of subtilty of thought on such subjects, as well as of power of mathematical generalization1o And

10 I may observe that the rule that we may compound motions, as the Law supposes, is involved in the step

of resolving them; which is done in the passage to which I refer. (Méc. Analyt. ptie. i. sect. i. art. 3. p. 225.)

thus we have here another example of that circumstance which we have already noticed in speaking of the First Law of Motion, (Art. 2 of this chapter,) and of the Law that Gravity is a uniform Force, (Art. 3); namely, that the law, though historically established by experiments, appears, when once discovered and reduced to its most simple and general form, to be self-evident. I am the more desirous of drawing attention to this feature in various portions of the history of science, inasmuch as it will be found to lead to some very extensive and important views, hereafter to be considered.

5. The Third Law of Motion.-We have, in the definition of Accelerating Force, a measure of Forces, so far as they are concerned in producing motion. We had before, in speaking of the principles of statics, defined the measure of Forces or Pressures, so far as they are employed in producing equilibrium. But these two aspects of Force are closely connected; and we require a law which shall lay down the rule of their connexion. By the same kind of muscular exertion by which we can support a heavy stone, we can also put it in motion. The question then occurs, how is the rate and manner of its motion determined? The answer to this question is contained in the Third Law

'Si on conçoit que le mouvement
d'un corps et les forces qui le sollici-
tent soient decomposées suivant trois
lignes droites perpendiculaires entre
elles, on pourra considérer séparé-
ment les mouvemens et les forces
relatives à chacun de ces trois di-
rections. Car à cause de la perpen-
dicularité des directions il est visible
que chacun de ces mouvemens par-
tiels peut être regardé comme in-
dépendant des deux autres, et qu'il
ne peut recevoir d'altération que
la part de la force qui agit dans la
direction de ce mouvement; l'on
peut conclure que ces trois mouve-

de

mens doivent suivre, chacun en particulier, les lois des mouvemens rectilignes accélérés ou retardés par les forces données.' Laplace makes the same assumption in effect, (Méc. Cél. p. i. liv. i. art. 7), by resolving the forces which act upon a point in three rectangular directions, and reasoning separately concerning each direction. But in his mode of treating the subject is involved a principle which belongs to the Third Law of Motion, namely, the doctrine that the velocity is as the force, of which we shall have to speak elsewhere.

« ՆախորդըՇարունակել »