Page images
PDF
EPUB

The two elements which are essential to our knowledge in the above cases, are necessary to human knowledge in all cases. In all cases, Knowledge implies a combination of Thoughts and Things. Without this combination, it would not be Knowledge. Without Thoughts, there could be no connexion; without Things, there could be no reality. Thoughts and Things are so intimately combined in our Knowledge, that we do not look upon them as distinct. One single act of the mind involves them both; and their contrast disappears in their union.

But though Knowledge requires the union of these two elements, Philosophy requires the separation of them, in order that the nature and structure of Knowledge may be seen. Therefore I begin by considering this separation. And I now proceed to speak of another way of looking at the antithesis of which I have spoken; and which I may, for the reasons which I have just mentioned, call the FUNDAMENTAL ANTITHESIS OF PHILOSOPHY.

Sect. 2.-Necessary and Experiential Truths.

Most persons are familiar with the distinction of necessary and contingent truths. The former kind are Truths which cannot but be true; as that 19 and 11 make 30;—that parallelograms upon the same base and between the same parallels are equal;—that all the angles in the same segment of a circle are equal. The latter are Truths which it happens (contingit) are true; but which, for anything which we can see, might have been otherwise; as that a lunar month contains 30 days, or that the stars revolve in circles round the pole. The latter kind of Truths are learnt by experience, and hence we may call them Truths of Experience, or, for the sake of convenience, Experiential Truths, in contrast with Necessary Truths.

Geometrical propositions are the most manifest examples of Necessary Truths. All persons who have read and understood the elements of geometry, know that the propositions above stated (that parallelograms

upon the same base and between the same parallels are equal; that all the angles in the same segment of a circle are equal,) are necessarily true; not only they are true, but they must be true. The meaning of the terms being understood, and the proof being gone through, the truth of the propositions must be assented to. We learn these propositions to be true by demonstrations deduced from definitions and axioms; and when we have thus learnt them, we see that they could not be otherwise. In the same manner, the truths which concern numbers are necessary truths: 19 and 11 not only do make 30, but must make that number, and cannot make anything else. In the same manner, it is a necessary truth that half the sum of two numbers added to half their difference is equal to the greater number.

It is easy to find examples of Experiential Truths;propositions which we know to be true, but know by experience only. We know, in this way, that salt will dissolve in water; that plants cannot live without light; -in short, we know in this way all that we do know in chemistry, physiology, and the material sciences in general. I take the Sciences as my examples of human knowledge, rather than the common truths of daily life, or moral or political truths; because, though the latter are more generally interesting, the former are much more definite and certain, and therefore better startingpoints for our speculations, as I have already said. And we may take elementary astronomical truths as the most familiar examples of Experiential Truths in the domain of science.

With these examples, the distinction of Necessary and Experiential Truths is, I hope, clear. The former kind, we see to be true by thinking about them, and see that they could not be otherwise. The latter kind, men could never have discovered to be true without looking at them; and having so discovered them, still no one will pretend to say they might not have been otherwise. For aught we can see, the astronomical truths which express the motions and periods of the sun, moon and stars, might have been otherwise. If we had been placed in another part of the solar system, our ex

periential truths respecting days, years, and the motions of the heavenly bodies, would have been other than they are, as we know from astronomy itself.

It is evident that this distinction of Necessary and Experiential Truths involves the same antithesis which we have already considered;—the antithesis of Thoughts and Things. Necessary Truths are derived from our own Thoughts: Experiential truths are derived from our observation of Things about us. The opposition of Necessary and Experiential Truths is another aspect of the Fundamental Antithesis of Philosophy.

Sect. 3.-Deduction and Induction.

I HAVE already stated that geometrical truths are established by demonstrations deduced from definitions and axioms. The term Deduction is specially applied to such a course of demonstration of truths from definitions and axioms. In the case of the parallelograms upon the same base and between the same parallels, we prove certain triangles to be equal, by supposing them placed so that their two bases have the same extremities; and hence, referring to an Axiom respecting straight lines, we infer that the bases coincide. We combine these equal triangles with other equal spaces, and in this way make up both the one and the other of the parallelograms, in such a manner as to shew that they are equal. In this manner, going on step by step, deducing the equality of the triangles from the axiom, and the equality of the parallelograms from that of the triangles, we travel to the conclusion. And this pro

cess of successive deduction is the scheme of all geometrical proof. We begin with Definitions of the notions which we reason about, and with Axioms, or self-evident truths, respecting these notions; and we get, by reasoning from these, other truths which are demonstratively evident; and from these truths again, others of the same kind, and so on. We begin with our own Thoughts, which supply us with Axioms to start from; and we reason from these, till we come to propositions

which are applicable to the Things about us; as for instance, the propositions respecting circles and spheres applicable to the motions of the heavenly bodies. This is Deduction, or Deductive Reasoning.

Experiential truths are acquired in a very different way. In order to obtain such truths, we begin with Things. In order to learn how many days there are in a year, or in a lunar month, we must begin by observing the sun and the moon. We must observe their changes day by day, and try to make the cycle of change fit into some notion of number which we supply from our own Thoughts. We shall find that a cycle of 30 days nearly will fit the changes of phase of the moon;-that a cycle of 365 days nearly will fit the changes of daily motion of the sun. Or, to go on to experiential truths of which the discovery comes within the limits of the history of science-we shall find (as Hipparchus found) that the unequal motion of the sun among the stars, such as observation shews it to be, may be fitly represented by the notion of an eccentric;—a circle in which the sun has an equable annual motion, the spectator not being in the center of the circle. Again, in the same manner, at a later period, Kepler started from more exact observations of the sun, and compared them with a supposed motion in a certain ellipse; and was able to shew that, not a circle about an eccentric point, but an ellipse, supplied the mode of conception which truly agreed with the motion of the sun about the earth; or rather, as Copernicus had already shewn, of the earth about the sun. In such cases, in which truths are obtained by beginning from observation of external things and by finding some notion with which the Things, as observed, agree, the truths are said to be obtained by Induction. The process is an Inductive

Process.

The contrast of the Deductive and Inductive process is obvious. In the former, we proceed at each step from general truths to particular applications of them; in the latter, from particular observations to a general truth which includes them. In the former case we may be said to reason downwards, in the latter case,

upwards; for general notions are conceived as standing above particulars. Necessary truths are proved, like arithmetical sums, by adding together the portions of which they consist. An inductive truth is proved, like the guess which answers a riddle, by its agreeing with the facts described. Demonstration is irresistible in its effect on the belief, but does not produce surprize, because all the steps to the conclusion are exhibited, before we arrive at the conclusion. Inductive inference is not demonstrative, but it is often more striking than demonstrative reasoning, because the intermediate links between the particulars and the inference are not shewn. Deductive truths are the results of relations among our own Thoughts. Inductive truths are relations which we discern among existing Things; and thus, this opposition of Deduction and Induction is again an aspect of the Fundamental Antithesis already spoken of.

Sect. 4.-Theories and Facts.

GENERAL experiential Truths, such as we have just spoken of, are called Theories, and the particular observations from which they are collected, and which they include and explain, are called Facts. Thus Hipparchus's doctrine, that the sun moves in an eccentric about the earth, is his Theory of the Sun, or the Eccentric Theory. The doctrine of Kepler, that the Earth moves in an Ellipse about the Sun, is Kepler's Theory of the Earth, the Elliptical Theory. Newton's doctrine that this elliptical motion of the Earth about the Sun is produced and governed by the Sun's attraction upon the Earth, is the Newtonian theory, the Theory of Attraction. Each of these Theories was accepted, because it included, connected and explained the Facts; the Facts being, in the two former cases, the motions of the Sun as observed; and in the other case, the elliptical motion of the Earth as known by Kepler's Theory. This antithesis of Theory and Fact is included in what has just been said of Inductive Propositions. A Theory is an Inductive Proposition, and the Facts

« ՆախորդըՇարունակել »