Page images
PDF
EPUB

progress. The views of the first real founders of the science are recorded by the Terms which are still in use, Neutral Salts, Affinity, and the like. The establishment of Dalton's theory has produced the use of the word Atom in a peculiar sense, or of some other word, as Proportion, in a sense equally technical. And Mr. Faraday has found it necessary, in order to expound his electro-chemical theory, to introduce such terms as Anode and Cathode, Anion and Cathion.

2. I need not adduce any further examples, for my object at present is only to point out the use and influence of such language: its rules and principles I shall hereafter try, in some measure, to fix. But what we have here to remark is, the extraordinary degree in which the progress of science is facilitated, by thus investing each new discovery with a compendious and steady form of expression. These terms soon become part of the current language of all who take an interest in speculation. However strange they may sound at first, they soon grow familiar in our ears, and are used without any effort, or any recollection of the difficulty they once involved. They become as common as the phrases which express our most frequent feelings and interests, while yet they have incomparably more precision than belongs to any terms which express feelings; and they carry with them, in their import, the results of deep and laborious trains of research. They convey the mental treasures of one period to the generations that follow; and laden with this, their precious freight, they sail safely across gulfs of time in which empires have suffered shipwreck, and the languages of common life have sunk into oblivion. We have still in constant circulation among us the Terms which belong to the geometry, the astronomy, the zoology, the medicine of the Greeks, and the algebra and chemistry of the Arabians. And we can in an instant, by means of a few words, call to our own recollection, or convey to the apprehension of another person, phenomena and relations of phenomena in optics, mineralogy, chemistry, which are so complex and abstruse, that it might seem to require the utmost subtlety of the human mind to

[ocr errors][merged small]

grasp them, even if that were made the sole object of its efforts. By this remarkable effect of Technical Language, we have the results of all the labours of past times not only always accessible, but so prepared that we may (provided we are careful in the use of our instrument) employ what is really useful and efficacious for the purpose of further success, without being in any way impeded or perplexed by the length and weight of the chain of past connexions which we drag along with us.

By such means,-by the use of the Inductive Process, and by the aid of Technical Terms,-man has been constantly advancing in the path of scientific truth. In a succeeding part of this work we shall endeavour to trace the general rules of this advance, and to lay down the maxims by which it may be most successfully guided and forwarded. But in order that we may do this to the best advantage, we must pursue still further the analysis of knowledge into its elements; and this will be our employment in the first part of the work.

CHAPTER III.

OF NECESSARY TRUTHS.

I.

VERY advance in human knowledge consists, as

EVE

we have seen, in adapting new ideal conceptions to ascertained facts, and thus in superinducing the Form upon the Matter, the active upon the passive processes of our minds. Every such step introduces into our knowledge an additional portion of the ideal element, and of those relations which flow from the nature of Ideas. It is, therefore, important for our purpose to examine more closely this element, and to learn what the relations are which may thus come to form part of our knowledge. An inquiry into those Ideas which form the foundations of our sciences;into the reality, independence, extent, and principal heads of the knowledge which we thus acquire;-is a task on which we must now enter, and which will employ us for several of the succeeding Books.

In this inquiry our object will be to pass in review all the most important Fundamental Ideas which our sciences involve; and to prove more distinctly in reference to each, what we have already asserted with regard to all, that there are everywhere involved in our knowledge acts of the mind as well as impressions of sense; and that our knowledge derives, from these acts, a generality, certainty, and evidence which the senses could in no degree have supplied. But before I proceed to do this in particular cases, I will give some account of the argument in its general form.

We have already considered the separation of our knowledge into its two elements,-Impressions of Sense and Ideas,-as evidently indicated by this; that all knowledge possesses characters which neither of these

elements alone could bestow.

Without our ideas, our sensations could have no connexion; without external impressions, our ideas would have no reality; and thus both ingredients of our knowledge must exist.

2. There is another mode in which the distinction of the two elements of knowledge appears, as I have already said (c. i. sect. 2): namely in the distinction of necessary, and contingent or experiential, truths. For of these two classes of truths, the difference arises from this;—that the one class derives its nature from the one, and the other from the other, of the two elements of knowledge. I have already stated briefly the difference of these two kinds of truths :—namely, that the former are truths which, we see, must be true:-the latter are true, but so far as we can see, might be otherwise. The former are true necessarily and universally: the latter are learnt from experience and limited by experience. Now with regard to the former kind of truths, I wish to show that the universality and necessity which distinguish them can by no means be derived from experience; that these characters do in reality flow from the ideas which these truths involve; and that when the necessity of the truth is exhibited in the way of logical demonstration, it is found to depend upon certain fundamental principles, (Definitions and Axioms,) which may thus be considered as expressing, in some measure, the essential characters of our ideas. These fundamental principles I shall afterwards proceed to discuss and to exhibit in each of the principal departments of science.

I shall begin by considering Necessary Truths more. fully than I have yet done. As I have already said, necessary truths are those in which we not only learn that the proposition is true, but see that it must be true; in which the negation of the truth is not only false, but impossible; in which we cannot, even by an effort of imagination, or in a supposition, conceive the reverse of that which is asserted.

3. That there are such truths cannot be doubted. We may take, for example, all relations of number. Three and Two added together make Five. We cannot

conceive it to be otherwise. We cannot, by any freak of thought, imagine Three and Two to make Seven.

It may be said that this assertion merely expresses what we mean by our words; that it is a matter of definition; that the proposition is an identical one.

But this is by no means so. The definition of Five is not Three and Two, but Four and One. How does it appear that Three and Two is the same number as Four and One? It is evident that it is so; but why is it evident?—not because the proposition is identical; for if that were the reason, all numerical propositions must be evident for the same reason. If it be a matter of definition that 3 and 2 make 5, it must be a matter of definition that 39 and 27 make 66. But who will say that the definition of 66 is 39 and 27? Yet the magnitude of the numbers can make no difference in the ground of the truth. How do we know that the product of 13 and 17 is 4 less than the product of 15 and 15? We see that it is so, if we perform certain operations by the rules of arithmetic; but how do we know the truth of the rules of arithmetic? If we divide 123375 by 987 according to the process taught us at school, how are we assured that the result is correct, and that the number 125 thus obtained is really the number of times one number is contained in the other?

The correctness of the rule, it may be replied, can be rigorously demonstrated. It can be shown that the process must inevitably give the true quotient.

Certainly this can be shown to be the case. And precisely because it can be shown that the result must be true, we have here an example of a necessary truth; and this truth, it appears, is not therefore necessary because it is itself evidently identical, however it may be possible to prove it by reducing it to evidently identical propositions. And the same is the case with all other numerical propositions; for, as we have said, the nature of all of them is the same.

Here, then, we have instances of truths which are not only true, but demonstrably and necessarily true. Now such truths are, in this respect at least, altogether

1

« ՆախորդըՇարունակել »