Page images
PDF
EPUB

laws. I shall further attempt to enumerate some of the principal fundamental relations which each idea thus introduces into our thoughts, and to express them by means of definitions and axioms, and other suitable forms.

I will only add a remark or two to illustrate further this view of the ideal grounds of our knowledge.

3. To persons familiar with any of the demonstrative sciences, it will be apparent that if we state all the Definitions and Axioms which are employed in the demonstrations, we state the whole basis on which those reasonings rest. For the whole process of demonstrative or deductive reasoning in any science, (as in geometry, for instance,) consists entirely in combining some of these first principles so as to obtain the simplest propositions of the science; then combining these so as to obtain other propositions of greater complexity; and so on, till we advance to the most recondite demonstrable truths; these last, however intricate and unexpected, still involving no principles except the original definitions and axioms. Thus, by combining the Definition of a triangle, and the Definitions of equal lines and equal angles, namely, that they are such as when applied to each other, coincide, with the Axiom respecting straight lines (that two such lines cannot inclose a space,) we demonstrate the equality of triangles, under certain assumed conditions. Again, by combining this result with the Definition of parallelograms, and with the Axiom that if equals be taken from equals the wholes are equal, we prove the equality of parallelograms between the same parallels and upon the same base. From this proposition, again, we prove the equality of the square on the hypotenuse of a triangle to the squares on the two sides containing the right angle. But in all this there is nothing contained which is not rigorously the result of our geometrical Definitions and Axioms. All the rest of our treatises of geometry consists only of terms and phrases of reasoning, the object of which is to connect those first principles, and to exhibit the effects of their combination in the shape of demonstration.

4. This combination of first principles takes place according to the forms and rules of Logic. All the steps of the demonstration may be stated in the shape in which logicians are accustomed to exhibit processes of reasoning in order to show their conclusiveness, that is, in Syllogisms. Thus our geometrical reasonings might be resolved into such steps as the following:All straight lines drawn from the centre of a circle to its circumference are equal:

But the straight lines AB, AC, are drawn from the centre of a circle to its circumference:

Therefore the straight lines AB, AC, are equal.

Each step of geometrical, and all other demonstrative reasoning, may be resolved into three such clauses as these; and these three clauses are termed respectively, the major premiss, the minor premiss, and the conclusion; or, more briefly, the major, the minor, and the conlcusion.

The principle which justifies the reasoning when exhibited in this syllogistic form, is this:-that a truth which can be asserted as generally, or rather as universally true, can be asserted as true also in each particular case. The minor only asserts a certain particular case to be an example of such conditions as are spoken of in the major; and hence the conclusion, which is true of the major by supposition, is true of the minor by consequence; and thus we proceed from syllogism to syllogism, in each one employing some general truth in some particular instance. Any proof which occurs in geometry, or any other science of demonstration, may thus be reduced to a series of processes, in each of which we pass from some general proposition to the narrower and more special propositions which it includes. And this process of deriving truths by the mere combination of general principles, applied in particular hypothetical cases, is called deduction; being opposed to induction, in which, as we have seen (chap. i. sect. 3), a new general principle is introduced at every step.

5. Now we have to remark that, this being so, however far we follow such deductive reasoning, we can

never have, in our conclusion any truth which is not virtually included in the original principles from which the reasoning started. For since at any step we merely take out of a general proposition something included in it, while at the preceding step we have taken this general proposition out of one more general, and so on perpetually, it is manifest that our last result was really included in the principle or principles with which we began. I say principles, because, although our logical conclusion can only exhibit the legitimate issue of our first principles, it may, nevertheless, contain the result of the combination of several such principles, and may thus assume a great degree of complexity, and may appear so far removed from the parent truths, as to betray at first sight hardly any relationship with them. Thus the proposition which has already been quoted respecting the squares on the sides of a right-angled triangle, contains the results of many elementary principles; as, the definitions of parallels, triangle, and square; the axioms respecting straight lines, and respecting parallels; and, perhaps, others. The conclusion is complicated by containing the effects of the combination of all these elements; but it contains nothing, and can contain nothing, but such elements and their combinations.

This doctrine, that logical reasoning produces no new truths, but only unfolds and brings into view those truths which were, in effect, contained in the first principles of the reasoning, is assented to by almost all who, in modern times, have attended to the science of logic. Such a view is admitted both by those who defend, and by those who depreciate the value of logic. 'Whatever is established by reasoning, must have been contained and virtually asserted in the premises'.' 'The only truth which such propositions can possess consists in conformity to the original principles.'

In this manner the whole substance of our geometry is reduced to the Definitions and Axioms which we employ in our elementary reasonings; and in like man

Whately's Logic, pp. 237, 238.

ner we reduce the demonstrative truths of any other science to the definitions and axioms which we there employ.

6. But in reference to this subject, it has sometimes been said that demonstrative sciences do in reality depend upon Definitions only; and that no additional kind of principle, such as we have supposed Axioms to be, is absolutely required. It has been asserted that in geometry, for example, the source of the necessary truth of our propositions is this, that they depend upon definitions alone, and consequently merely state the identity of the same thing under different aspects.

That in the sciences which admit of demonstration, as geometry, mechanics, and the like, Axioms as well as Definitions are needed, in order to express the grounds of our necessary convictions, must be shown hereafter by an examination of each of these sciences in particular. But that the propositions of these sciences, those of geometry for example, do not merely assert the identity of the same thing, will, I think, be generally allowed, if we consider the assertions which we are enabled to make. When we declare that 'a straight line is the shortest distance between two points,' is this merely an identical proposition? the definition of a straight line in another form? Not so: the definition of a straight line involves the notion of form only, and does not contain anything about magnitude; consequently, it cannot contain anything equivalent to 'shortest.' Thus the propositions of geometry are not merely identical propositions; nor have we in their general character anything to countenance the assertion, that they are the results of definitions alone. And when we come to examine this and other sciences more closely, we shall find that axioms, such as are usually in our treatises made the fundamental principles of our demonstrations, neither have ever been, nor can be, dispensed with. Axioms, as well as Definitions, are in all cases requisite, in order properly to exhibit the grounds of necessary truth.

7. Thus the real logical basis of every body of demonstrated truths are the Definitions and Axioms

which are the first principles of the reasonings. But when we are arrived at this point, the question further occurs, what is the ground of the truth of these Axioms? It is not the logical, but the philosophical, not the formal, but the real foundation of necessary truth, which we are seeking. Hence this inquiry necessarily comes before us, What is the ground of the Axioms of Geometry, of Mechanics, and of any other demonstra

ble science?

The answer which we are led to give, by the view which we have taken of the nature of knowledge, has already been stated. The ground of the axioms belonging to each science is the Idea which the axiom involves. The ground of the Axioms of Geometry is the Idea of Space: the ground of the Axioms of Mechanics is the Idea of Force, of Action and Reaction, and the like. And hence these Ideas are Fundamental Ideas; and since they are thus the foundations, not only of demonstration but of truth, an examination into their real import and nature is of the greatest consequence to our purpose.

8. Not only the Axioms, but the definitions which form the basis of our reasonings, depend upon our Fundamental Ideas. And the Definitions are not arbitrary definitions, but are determined by a necessity no less rigorous than the Axioms themselves. We could not think of geometrical truths without conceiving a circle; and we could not reason concerning such truths without defining a circle in some mode equivalent to that which is commonly adopted. The Definitions of parallels, of right angles, and the like, are quite as necessarily prescribed by the nature of the case, as the Axioms which these Definitions bring with them. Indeed we may substitute one of these kinds of principles for another. We cannot always put a Definition in the place of an Axiom; but we may always find an Axiom which shall take the place of a Definition. If we assume a proper Axiom respecting straight lines, we need no Definition of a straight line. But in whatever shape the principle appear, as Definition or as Axiom, it has about it nothing casual or

« ՆախորդըՇարունակել »