Page images
PDF
EPUB

the same space, are equal," is a definition of geometrical equality: the axiom, that "the whole is greater than its part," is a definition of whole and part. But surely there are very serious objections to this view. It would seem more natural to say, if the former axiom is a definition. of the word equal, that the latter is a definition of the word greater. And how can one short phrase define two terms? If I say, "the heat of summer is greater than the heat of winter," does this assertion define anything, though the proposition is perfectly intelligible and distinct? I think, then, that this attempt to reduce these axioms to definitions is quite untenable.

6. I have stated that a definition can be of no use, except we can conceive the possibility and truth of the property connected with it; and that if we do conceive this, we may rightly begin our reasonings by stating the property as an axiom; which Euclid does, in the case of straight lines and of parallels. The reviewer inquires, (p. 92,) whether I am prepared to extend this doctrine to the case of circles, for which the reasoning is usually rested upon the definition;-whether I would replace this definition by an axiom, asserting the possibility of such a circle. To this I might reply, that it is not at all incumbent upon me to assent to such a change; for I have all along stated that it is indifferent whether the fundamental properties from which we reason be exhibited as definitions or as axioms, provided their necessity be clearly seen. But I am ready to declare that I think the form of our geometry would be not at all the worse, if, instead of the usual definition of a circle,-"that it is a figure contained by one line, which is called the circumference, and which is such, that all straight lines drawn from a certain point within the circumference are equal to one another," we were to substitute an axiom and a definition, as follows:

Axiom. If a line be drawn so as to be at every point equally distant from a certain point, this line will return into itself, or will be one line including a space.

Definition. The space is called a circle, the line the circumference, and the point the center.

And this being done, it would be true, as the reviewer remarks, that geometry cannot stir one step without resting on an axiom. And I do not at all hesitate to say, that the above axiom, expressed or understood, is no less necessary than the definition, and is tacitly assumed in every proposition into which circles enter.

7. I have, I think, now disposed of the principal objections which bear upon the proper axioms of geometry. The principles which are stated as the first seven axioms of Euclid's Elements, need not, as I have said, be here discussed. They are principles which refer, not to Space in particular, but to Quantity in general: such for instance, as these; "If equals be added to equals the wholes are equal;"-"If equals be taken from equals the remainders are equal." But I will make an observation or two upon them before I proceed.

Both Locke and Stewart have spoken of these axioms as barren truisms: as propositions from which it is not possible to deduce a single inference: and the reviewer asserts that they are not first principles, but laws of thought. (p. 88.) To this last expression I am willing to assent; but I would add, that not only these, but all the principles which express the fundamental conditions of our knowledge, may with equal propriety be termed laws of thought; for these principles depend upon our ideas, and regulate the active operations of the mind, by which coherence and connexion are given to its passive impressions. But the assertion that no conclusions can be drawn from simple axioms, or laws of human thought, which regard quantity, is by no means true. The whole

of arithmetic, for instance, the rules for the multiplication and division of large numbers, for finding a common measure, and, in short, a vast body of theory respecting numbers, rests upon no other foundation than such axioms as have been just noticed, that if equals be added to equals the wholes will be equal. And even when Locke's assertion, that from these axioms no truths can be deduced, is modified by Stewart and the reviewer, and limited to geometrical truths, it is hardly tenable (although, in fact, it matters little to our argument whether it is or no). For the greater part of the Seventh Book of Euclid's Elements, (on Commensurable and Incommensurable Quantities,) and the Fifth Book, (on Proportion,) depend upon these axioms, with the addition only of the definition or axiom (for it may be stated either way) which expresses the idea of proportionality in numbers. So that the attempt to disprove the necessity and use of axioms, as principles of reasoning, fails even when we take those instances which the opponents consider as the more manifestly favourable to their doctrine.

8. But perhaps the question may have already suggested itself to the reader's mind, of what use can it be formally to state such principles as these, (for example, that if equals be added to equals the wholes are equal,) since, whether stated or no, they will be assumed in our reasoning? And how can such principles be said to be necessary, when our proof proceeds equally well without any reference to them? And the answer is, that it is precisely because these are the common principles of reasoning, which we naturally employ without specially contemplating them, that they require to be separated from the other steps and formally stated, when we analyze the demonstrations which we have obtained In every mental process many principles are combined

and abbreviated, and thus in some measure concealed and obscured. In analyzing these processes, the combination must be resolved, and the abbreviation expanded, and thus the appearance is presented of a pedantic and superfluous formality. But that which is superfluous for proof, is necessary for the analysis of proof. In order to exhibit the conditions of demonstration distinctly, they must be exhibited formally. In the same manner, in demonstration we do not usually express every step in the form of a syllogism, but we see the grounds of the conclusiveness of a demonstration, by resolving it into syllogisms. Neither axioms nor syllogisms are necessary for conviction; but they are necessary to display the conditions under which conviction becomes inevitable. The application of a single one of the axioms just spoken of is so minute a step in the proof, that it appears pedantic to give it a marked place; but the very essence of demonstration consists in this, that it is composed of an indissoluble succession of such minute steps. The admirable circumstance is, that by the accumulation of such apparently imperceptible advances, we can in the end make so vast and so sure a progress. The completeness of the analysis of our knowledge appears in the smallness of the elements into which it is thus resolved. The minuteness of any of these elements of truth, of axioms for instance, does not prevent their being as essential as others which are more obvious. And any attempt to assume one kind of element only, when the course of our analysis brings before us two or more kinds, is altogether unphilosophical. Axioms and definitions are the proximate constituent principles of our demonstrations; and the intimate bond which connects together a definition and an axiom on the same subject is not truly expressed by asserting the latter to be derived from the former. This bond of connexion exists

in the mind of the reasoner, in his conception of that to which both definition and axiom refer, and consequently in the general Fundamental Idea of which that conception is a modification.

CHAPTER VI.

OF THE PERCEPTION OF SPACE.

1. ACCORDING to the views above explained, certain of the impressions of our senses convey to us the perception of objects as existing in space; inasmuch as by the constitution of our minds we cannot receive those impressions otherwise than in a certain form, involving such a manner of existence. But the question deserves to be asked, What are the impressions of sense by which we thus become acquainted with space and its relations? And as we have seen that this idea of space implies an act of the mind as well as an impression on the sense, what manifestations do we find of this activity of the mind, in our observation of the external world?

It is evident that sight and touch are the senses by which the relations of space are perceived, principally or entirely. It does not appear that an odour, or a feeling of warmth or cold, would, independently of experience, suggest to us the conception of a space surrounding us. But when we see objects, we see that they are extended and occupy space; when we touch them, we feel that they are in a space in which we also are. We have before our eyes any object, for instance, a board covered with geometrical diagrams; and we distinctly perceive, by vision, those lines of which the relations are the subjects of our mathematical reasoning. Again, we see before us a solid object, a cubical box for instance; we see that it is within reach; we stretch out the hand and

« ՆախորդըՇարունակել »