Page images
PDF
EPUB

almost or quite, to a complete identification of the Facts with the Ideas. In the sciences to which we now proceed, we shall not seek to fill up the chasm by which Facts and Ideas are separated; but we shall endeavour to detect the Ideas which our knowledge involves, to show how essential these are; and in some respects to trace the mode in which they have been gradually developed among men.

10. The motions of the heavenly bodies, their laws, their causes, are among the subjects of the first division of the Mechanical Sciences; and of these sciences we formerly sketched the history, and have now endeavoured to exhibit the philosophy. If we were to take any other class of motions, their laws and causes might give rise to sciences which would be mechanical sciences in exactly the same sense in which Physical Astronomy is so. The phenomena of magnets, of electrical bodies, of galvanical apparatus, seem to form obvious materials for such sciences; and if they were so treated, the philosophy of such branches of knowledge would naturally come under our consideration at this point of our progress.

But on looking more attentively at the sciences of Electricity, Magnetism, and Galvanism, we discover cogent reasons for transferring them to another part of our arrangement; we find it advisable to associate them with Chemistry, and to discuss their principles when we can connect them with the principles of chemical science. For though the first steps and narrower generalizations of these sciences depend upon mechanical ideas, the highest laws and widest generalizations which we can reach respecting them, involve chemical relations. The progress of these portions of knowledge is in some respects opposite to the progress of Physical Astronomy. In this, we begin with phenomena which appear to indicate peculiar and various qualities in the

bodies which we consider, (namely, the heavenly bodies,) and we find in the end that all these qualities resolve themselves into one common mechanical property, which exists alike in all bodies and parts of bodies. On the contrary, in studying magnetical and electrical laws, we appear at first to have a single extensive phenomenon, attraction and repulsion: but in our attempts to generalize this phenomenon, we find that it is governed by conditions depending upon something quite separate from the bodies themselves, upon the presence and distribution of peculiar and transitory agencies; and, so far as we can discover, the general laws of these agencies are of a chemical nature, and are brought into action by peculiar properties of special substances. In cosmical phenomena, everything, in proportion as it is referred to mechanical principles, tends to simplicity,-to permanent uniform forces,-to one common, positive, property. In magnetical and electrical appearances, on the contrary, the application of mechanical principles leads only to a new complexity, which requires a new explanation; and this explanation involves changeable and various forces,-gradations and oppositions of qualities. The doctrine of the universal gravitation of matter is a simple and ultimate truth, in which the mind can acquiesce and repose. We rank gravity among the mechanical attributes of matter, and we see no necessity to derive it from any ulterior properties. Gravity belongs to matter, independent of any conditions. But the conditions of magnetic or electrical activity require investigation as much as the laws of their action. Of these conditions no mere mechanical explanation can be given; we are compelled to take along with us chemical properties and relations also; and thus magnetism, electricity, galvanism, are mechanico-chemical sciences.

11. Before considering these, therefore, I shall treat

VOL. I. W. P.

T

of what I shall call Secondary Mechanical Sciences; by which expression I mean the sciences depending upon certain qualities which our senses discover to us in bodies;-Optics, which has visible phenomena for its subject; Acoustics, the science of hearing; the doctrine of Heat, a quality which our touch recognizes: to this last science I shall take the liberty of sometimes giving the name Thermotics, analogous to the names of the other two. If our knowledge of the phenomena of Smell and Taste had been successfully cultivated and systematized, the present part of our work would be the place for the philosophical discussion of those sensations as the subjects of science.

The branches of knowledge thus grouped in one class involve common Fundamental Ideas, from which their principles are derived in a mode analogous, at least in a certain degree, to the mode in which the principles of the mechanical sciences are derived from the fundamental ideas of causation and reaction. We proceed now to consider these Fundamental Ideas, their nature, development, and consequences.

ADDITIONAL NOTE TO CHAPTER IV.-ON THE AXIOMS WHICH RELATE TO THE IDEA OF CAUSE.

THE Axiom that Reaction is equal and opposite to Action, may appear to be at variance with a maxim concerning Cause which is commonly current; namely, that the "Cause precedes Effect, and Effect follows Cause." For it may be said, if A, the Action, and R, the Reaction, can be considered as mutually the cause of each other, A must precede R, and yet must follow it, which is impossible. But to this I reply, that in those cases of direct Causation to which the maxim applies, the Cause and Effect are not successive, but simultaneous. If I press against some obstacle, the obstacle resists and returns the pressure at the instant it is exerted, not after any interval of time, however small. The common

maxim, that the effect follows the cause, has arisen from the practice of considering, as examples of cause and effect, not instantaneous forces or causes, and the instantaneous changes which they produce; but taking, instead of this latter, the cumulative effects produced in the course of time, and compared with like results occurring without the action of the cause. Thus, if we alter the length of a clock-pendulum, this change produces, as its effect, a subsequent change of rate in the clock: because the rate is measured by the accumulated effects of the pendulum's gravity, before and after the change. But the pendulum produces its mechanical effect upon the escapement, at the moment of its contact, and each wheel upon the next, at the moment of its contact. As has been said in a Review of this work, "The time lost in cases of indirect physical causation is consumed in the movements which take place among the parts of the mechanism in action, by which the active forces so transformed into momentum are transported over intervals of space to new points of action, the motion of matter in such cases being regarded as a mere carrier of force." (Quarterly Rev., No. cxxxv., p. 212.) See this subject further treated in a Memoir entitled, "Discussion of the Question:-Are Cause and Effect Successive or Simultaneous?" in the Memoirs of the Cambridge Philosophical Society, Vol. VII. Part iii.

ADDITIONAL NOTE TO CHAPTER VI., SECT. 5.—ON THE CENTER OF GRAVITY.

To the doctrine that mechanical principles, such as the one here under consideration (that the pressure on the point of support is equal to the sum of the weights), are derived from our Ideas, and do not flow from but regulate our experience, objections are naturally made by those who assert all our knowledge to be derived from experience. How, they ask, can we know the properties of pressures, levers and the like, except from experience? What but experience can possibly inform us that a force applied transversely to a lever will have any tendency to turn the lever on its center? This cannot be, except we suppose in the lever tenacity, rigidity and the like, which are qualities known only by experience. And it is obvious that this line of argument might be carried on through the whole subject.

My answer to this objection is a remark of the same kind as one which I have made respecting the Ideas of Space, Time, and Number, in a Note at the end of Chapter x. of the last Book. The mind, in apprehending events as causes and effects, is governed by Laws of its own Activity; and these Laws govern the results of the mind's action;

and make these results conform to the Axioms of Causation. But this activity of the mind is awakened and developed by being exercised; and in dealing with the examples of cause and effect here spoken of, (namely, pressure and resistance, force and motion,) the mind's activity is necessarily governed also by the bodily powers of perception and action. We are human beings only in so far as we have existed in space and time, and of our human faculties, developed by our existence in space and time, space and time are necessary conditions. In like manner, we are human beings only in so far as we have bodies, and bodily organs; and our bodies necessarily imply material objects external to us. And hence our human faculties, developed by our bodily existence in a material world, have the conditions of matter for their necessary Laws. I have already said (Chap. v.) that our conception of Force arises with our consciousness of our own muscular exertions ;—that Force cannot be conceived without Resistance to exercise itself upon;—and that this resistance is supplied by Matter. And thus the conception of Matter, and of the most general modes in which Matter receives, resists, and transmits force, are parts of our constitution which, though awakened and unfolded by our being in a material world, are not distinguishable from the original structure of the mind. I do not ascribe to the mind Ideas which it would have, even if it had no intercourse with the world of space, time, and matter; because we cannot imagine a mind in such a state. But I attempt to point out and classify those Conditions of all Experience, to which the intercourse of all minds with the material world has necessarily given rise in all. Truths thus necessarily acquired in the course of all experience, cannot be said to be learnt from experience, in the same sense in which particular facts, at definite times, are learnt from experience, learnt by some persons and not by others, learnt with more or less of certainty. These latter special truths of experience will be very important subjects of our consideration; but our whole chance of discussing them with any profit depends upon our keeping them distinct from the necessary and universal conditions of experience. Here, as everywhere, we must keep in view the fundamental antithesis of Ideas and Facts.

« ՆախորդըՇարունակել »